Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 51(10): 2472-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25328186

RESUMO

An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

2.
Artif Organs ; 22(3): 203-9, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9527280

RESUMO

This work describes the preparation and characterization of anionic collagen composites with rhamsan and vinylidene fluoride-trifluorethylene with improved rheological and dielectric properties without loss of collagen secondary structure with an interaction occurring between both macromolecules of the composites. On a comparative basis, the force needed for the extrusion of anionic collagen:rhamsan composites was in the range from 0.088 to 0.080 J compared to that for collagen of 0.189 J. Anionic collagen:vinylidene fluoride-trifluorethylene composites were characterized, in the case of the 1:1 composite, by a pyroelectric coefficient of 1.89 x 10(-4) cm(-2) K(-1), which was significantly higher than those determined under the same conditions for native anionic collagen and vinylidene fluoride-trifluorethylene.


Assuntos
Anestésicos/química , Colágeno/química , Hidrocarbonetos Fluorados/química , Polissacarídeos Bacterianos/química , Compostos de Vinila/química , Ânions , Materiais Biocompatíveis , Varredura Diferencial de Calorimetria , Géis , Polímeros , Reologia , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...