Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Omics ; 18(3): 186-195, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35230372

RESUMO

Inflammation presides early after myocardial infarction (MI) as a key event in cardiac wound healing. Ischemic cardiomyocytes secrete inflammatory cues to stimulate infiltration of leukocytes, predominantly macrophages and neutrophils. Infiltrating neutrophils degranulate to release a series of proteases including matrix metalloproteinase (MMP)-9 to break down extracellular matrix and remove necrotic myocytes to create space for the infarct scar to form. While neutrophil to macrophage communication has been explored, the reverse has been understudied. We used a proteomics approach to catalogue the macrophage secretome at MI day 1. Murinoglobulin-1 (MUG1) was the highest-ranked secreted protein (4.1-fold upregulated at MI day 1 vs. day 0 pre-MI cardiac macrophages, p = 0.004). By transcriptomics evaluation, galectin-3 (Lgals3) was 2.2-fold upregulated (p = 0.008) in MI day 1 macrophages. We explored the direct roles of MUG1 and Lgals3 on neutrophil degranulation. MUG1 blunted while Lgals3 amplified neutrophil degranulation in response to phorbol 12-myristate 13-acetate or interleukin-1ß, as measured by MMP-9 secretion. Lgals3 itself also stimulated MMP-9 secretion. To determine if MUG1 regulated Lgals3, we co-stimulated neutrophils with MUG1 and Lgals3. MUG1 limited degranulation stimulated by Lgals3 by 64% (p < 0.001). In vivo, MUG1 was elevated in the infarct region at MI days 1 and 3, while Lgals3 increased at MI day 7. The ratio of MUG1 to Lgals3 positively correlated with infarct wall thickness, revealing that MUG1 attenuated infarct wall thinning. In conclusion, macrophages at MI day 1 secrete MUG1 to limit and Lgals3 to accentuate neutrophil degranulation to regulate infarct wall thinning.


Assuntos
Galectina 3 , Metaloproteinase 9 da Matriz , Infarto do Miocárdio , Animais , Galectina 3/genética , Galectina 3/metabolismo , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Neutrófilos/metabolismo , Soroglobulinas
2.
Am J Physiol Heart Circ Physiol ; 322(2): H145-H155, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890276

RESUMO

Neutrophils infiltrate into the left ventricle (LV) early after myocardial infarction (MI) and launch a proinflammatory response. Along with neutrophil infiltration, LV wall thinning due to cardiomyocyte necrosis also peaks at day 1 in the mouse model of MI. To understand the correlation, we examined a previously published data set that included day 0 (n = 10) and MI day (D) 1 (n = 10) neutrophil proteome and echocardiography assessments. Out of 123 proteins, 4 proteins positively correlated with the infarct wall thinning index (1/wall thickness): histone 1.2 (r = 0.62, P = 0.004), S100A9 (r = 0.60, P = 0.005), histone 3.1 (r = 0.55, P = 0.01), and fibrinogen (r = 0.47, P = 0.04). As S100A9 was the highest ranked secreted protein, we hypothesized that S100A9 is a functional effector of infarct wall thinning. We exogenously administered S100A8/A9 at the time of MI to mice [C57BL/6J, male, 3-6 mo of age, n = 7 M (D1), and n = 5 M (D3)] and compared with saline vehicle control-treated mice [n = 6 M (D1) and n = 6 M (D3)] at MI days 1 and 3. At MI day 3, the S100A8/A9 group showed a 22% increase in the wall thinning index compared with saline (P = 0.02), along with higher dilation and lower ejection fraction. The decline in cardiac physiology occurred subsequent to increased neutrophil and macrophage infiltration at MI day 1 and increased macrophage infiltration at D3. Our results reveal that S100A9 is a functional effector of infarct wall thinning.NEW & NOTEWORTHY S100A9 is a functional marker of infarct wall thinning.


Assuntos
Calgranulina B/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Calgranulina B/genética , Células Cultivadas , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Proteoma/genética , Proteoma/metabolismo
3.
Biomolecules ; 11(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805901

RESUMO

Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Infarto do Miocárdio/patologia , Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Remodelação Ventricular
4.
Cell Signal ; 77: 109816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122000

RESUMO

Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets.


Assuntos
Infarto do Miocárdio/patologia , Neutrófilos/metabolismo , Cicatrização , Quimiocina CXCL12/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Infiltração de Neutrófilos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
J Mol Cell Cardiol ; 145: 112-121, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574573

RESUMO

INTRODUCTION: Macrophages and neutrophils are primary leukocytes involved in the inflammatory response to myocardial infarction (MI). While interleukin (IL)-4 is an in vitro anti-inflammatory stimulus, the MI myocardium does not express a considerable amount of IL-4 but does express IL4 receptors. We hypothesized that continuous exogenous IL-4 infusion starting 24 h after MI would promote a polarization switch in inflammatory cells towards a reparative phenotype. METHODS: C57BL/6J male mice (3-6 months of age) were subcutaneously infused with either saline (n = 17) or IL-4 (20 ng/g/day; n = 17) beginning 24 h after MI and evaluated at MI day 3. RESULTS: Macrophages and neutrophils were isolated ex vivo from the infarct region and examined. Exogenous IL-4 decreased pro-inflammatory Ccl3, Il12a, Tnfa, and Tgfb1 in neutrophils and increased anti-inflammatory Arg1 and Ym1 in macrophages (all p < .05). Tissue clearance by IL-4 treated neutrophils was not different, while selective phagocytosis of neutrophils doubled in IL-4 treated macrophages (p < .05). Of 24,339 genes examined by RNA-sequencing, 2042 genes were differentially expressed in macrophages from IL-4 stimulated infarct (all FDR p < .05). Pdgfc gene expression was ranked first, increasing 3-fold in macrophages stimulated with IL-4 (p = 1 × 10-9). Importantly, changes in macrophage physiology and transcriptome occurred in the absence of global LV effects. Bone marrow derived monocytes stimulated with mouse recombinant PDGF-CC protein (10 µg/ml) or PDGF-CC blocking antibody (200 ng/ml) did not change Arg1 or Ym1 expression, indicating the in vivo effect of IL-4 to stimulate macrophage anti-inflammatory gene expression was independent of PDGF-CC. CONCLUSIONS: Our results indicate that exogenous IL-4 promotes inflammation resolution by turning off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to mediate removal of apoptotic neutrophils.


Assuntos
Inflamação/patologia , Interleucina-4/farmacologia , Macrófagos/patologia , Infarto do Miocárdio/patologia , Neutrófilos/patologia , Fagocitose/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Polaridade Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Inflamação/genética , Linfocinas/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Neutrófilos/efeitos dos fármacos , Fenótipo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Matrix Biol ; 91-92: 109-116, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446909

RESUMO

Cardiac wound healing after myocardial infarction (MI) evolves from pro-inflammatory to anti-inflammatory to reparative responses, and the cardiac fibroblast is a central player during the entire transition. The fibroblast mirrors changes seen in the left ventricle infarct by undergoing a continuum of polarization phenotypes that follow pro-inflammatory, anti-inflammatory, and pro-scar producing profiles. The development of each phenotype transition is contingent upon the MI environment into which the fibroblast enters. In this mini-review, we summarize our current knowledge regarding cardiac fibroblast activation during MI and highlight key areas where gaps remain.


Assuntos
Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Recuperação de Função Fisiológica/genética , Animais , Diferenciação Celular , Linhagem da Célula/genética , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/classificação , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/reabilitação , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/fisiologia
7.
Am J Physiol Heart Circ Physiol ; 318(3): H706-H714, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32083973

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that break down extracellular matrix (ECM) components and have shown to be highly active in the myocardial infarction (MI) landscape. In addition to breaking down ECM products, MMPs modulate cytokine signaling and mediate leukocyte cell physiology. MMP-2, -7, -8, -9, -12, -14, and -28 are well studied as effectors of cardiac remodeling after MI. Whereas 13 MMPs have been evaluated in the MI setting, 13 MMPs have not been investigated during cardiac remodeling. Here, we measure the remaining MMPs across the MI time continuum to provide the full catalog of MMP expression in the left ventricle after MI in mice. We found that MMP-10, -11, -16, -24, -25, and -27 increase after MI, whereas MMP-15, -17, -19, -21, -23b, and -26 did not change with MI. For the MMPs increased with MI, the macrophage was the predominant cell source. This work provides targets for investigation to understand the full complement of specific MMP roles in cardiac remodeling.NEW & NOTEWORTHY To date, a number of matrix metalloproteinases (MMPs) have not been evaluated in the left ventricle after myocardial infarction (MI). This article supplies the missing knowledge to provide a complete MI MMP compendium.


Assuntos
Ventrículos do Coração/metabolismo , Metaloendopeptidases/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Remodelação Ventricular/fisiologia , Peptidase de Processamento Mitocondrial
8.
Basic Res Cardiol ; 114(5): 37, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31418072

RESUMO

In response to myocardial infarction (MI), neutrophils (PMNs) are early responders that initiate the inflammatory reaction. Because macrophages and fibroblasts show polarization states after MI, we hypothesized PMNs also undergo phenotypic changes over the MI time course. The objective of the current study was to map the continuum of polarization phenotypes in cardiac neutrophils over the first week of MI. C57BL/6J male mice (3-6 months old) underwent permanent coronary artery ligation to induce MI, and PMNs were isolated from the infarct region at days 1, 3, 5, and 7 after MI. Day 0 served as a no MI negative control. Aptamer proteomics was performed on biological replicates (n = 10-12) for each time point. Day (D)1 MI neutrophils had a high degranulation profile with increased matrix metalloproteinase (MMP) activity. D3 MI neutrophil profiles showed upregulation of apoptosis and induction of extracellular matrix (ECM) organization. D5 MI neutrophils further increased their ECM reorganization profile. D7 MI neutrophils had a reparative signature that included expression of fibronectin, galectin-3, and fibrinogen to contribute to scar formation by stimulating ECM reorganization. Of note, fibronectin was a key modulator of degranulation, as it amplified MMP-9 release in the presence of an inflammatory stimulus. Our results indicate that neutrophils selectively degranulate over the MI time course, reflective of both their intrinsic protein profiles as well as the ECM environment in which they reside. MMPs, cathepsins, and ECM proteins were prominent neutrophil degranulation indicators.


Assuntos
Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Neutrófilos , Animais , Degranulação Celular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteoma , Remodelação Ventricular/fisiologia
9.
Basic Res Cardiol ; 114(2): 6, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635789

RESUMO

Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.


Assuntos
Inflamação/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Fenótipo , Remodelação Ventricular/fisiologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...