Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1810, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418497

RESUMO

Selective functionalization of innate sp2 C-H bonds under ambient conditions is a grand synthetic challenge in organic chemistry. Here we combine host-guest charge transfer-based photoredox chemistry with supramolecular nano-confinement to achieve selective carbonylation of styrene by tuning the dioxygen concentration. We observe exclusive photocatalytic formation of benzaldehyde under excess O2 (>1 atm) while Markovnikov addition of water produced acetophenone in deoxygenated condition upon photoexcitation of confined styrene molecules inside a water-soluble cationic nanocage. Further by careful tuning of the nanocage size, electronics, and guest preorganization, we demonstrate rate enhancement of benzaldehyde formation and a complete switchover to the anti-Markovnikov product, 2-phenylethan-1-ol, in the absence of O2. Raman spectroscopy, 2D 1H-1H NMR correlation experiments, and transient absorption spectroscopy establish that the site-selective control on the confined photoredox chemistry originates from an optimal preorganization of styrene molecules inside the cavity. We envision that the demonstrated host-guest charge transfer photoredox paradigm in combination with green atom-transfer reagents will enable a broad range of sp2 carbon-site functionalization.

2.
Chem Commun (Camb) ; 59(88): 13143-13146, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37849327

RESUMO

Ultrafast C-H bond activation and functionalization in confinement using visible light will enable engineering chemical reactions with extraordinary speed and selectivity. To provide a transition metal-free route, here we demonstrate C-H bond activation reactions on poly-aromatic hydrocarbons (PAH) in all-organic cationic nanocage ExBox4+ for the first time. Visible light excitation in the host-guest charge transfer (CT) state allows the formation of oxidized photoproducts with high selectivity. Mechanistic understanding of this CT-mediated photoreaction using femtosecond broadband transient absorption revealed a few ∼100 ps timescale for C-H bond breaking on the attached -CH3 group via sequential electron transfer and proton transfer steps. We envision that our photosensitizer-free method will open up new avenues to pursue organic reactions using cavities that could serve both as photoredox catalysts and hosts for reactive reaction intermediates.

3.
Angew Chem Int Ed Engl ; 62(45): e202312500, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676122

RESUMO

Developing methods that activate C-H bonds directly with high selectivity for C-C bond formation in complex organic synthesis has been a major chemistry challenge. Recently it has been shown that photoactivation of weakly polarized C-H bonds can be carried out inside a cationic water-soluble nanocage with visible light-mediated host-guest charge transfer (CT) chemistry. Using this novel photoredox activation paradigm, here we demonstrate C-C bond formation to photo-generate 1,3-diynes at room temperature in water from terminal aromatic alkynes for the first time. The formation of cavity-confined alkyne radical cation and the proton-removed neutral radical species highlight the unique C-C coupling step driven by supramolecular preorganization.

4.
J Phys Chem B ; 127(2): 567-576, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36599044

RESUMO

Photogenerated polarons in π-conjugated polymers are the precursors to free charges at donor-acceptor interfaces. Unraveling the relationship between film morphology and polaron formation is conjectured to enable efficient charge generation in organic photovoltaic devices. However, it has been challenging to track the ultrafast dynamics of polarons selectively and thus evaluate the molecular coordinates that drive charge generation in films. Using a combination of broadband femtosecond transient absorption and resonance-selective femtosecond stimulated Raman spectroscopy, here, we investigate the polaron generation dynamics exclusively in traditional crystalline poly(3-hexylthiophene) (P3HT) and its amorphous side-chain variant poly(3-(2-ethylhexyl)thiophene-2,5-diyl) (P3EHT) films. The transient Raman data unequivocally provides evidence for an initial delocalization of the polaronic states via thiophene backbone planarization in ∼100 fs while capturing the subsequent morphology-dependent cooling dynamics in a few picoseconds. Our work highlights the structural significance of crystalline morphology in generating hot-charges and thereby emphasizes the importance of side-chain engineering in designing highly efficient conjugated polymer films for hot-carrier photovoltaic devices.

5.
ACS Appl Mater Interfaces ; 15(21): 25173-25183, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36449661

RESUMO

There has been a widespread interest in developing self-assembled porphyrin nanostructures to mimic nature's light-harvesting processes. Herein, porphyrin-based coordination polymer gel (CPG) has been developed as a "soft" photocatalyst material for hydrogen (H2) production from water under visible light. The CPG offers a hierarchical nanofibrous network structure obtained through self-assembly of a terpyridine alkyl-amide appended porphyrin (TPY-POR)-based low molecular weight gelator with ruthenium ions (RuII) and produces H2 with a rate of 5.7 mmol g-1 h-1 in the presence of triethylamine (TEA) as a sacrificial electron donor. Further, the [Fe2(bdt)(CO)6] (dbt = 1,2-benzenedithiol) cocatalyst, which can mimic the activity of iron hydrogenase, is coassembled in the CPG and shows remarkable improvement in H2 evolution (catalytic activity; rate ∼10.6 mmol g-1 h-1 and turnover number ∼1287). The significant enhancement in catalytic activity was supported by several controlled experiments, including femtosecond transient absorption (TA) spectroscopy and also DFT calculation. The TA study supported the cascade electron transfer process from porphyrin core to [Ru(TPY)2]2+ center, and subsequently, the electron transfers to the cocatalyst [Fe2(bdt)(CO)6] for H2 production.

6.
Chem Sci ; 13(39): 11506-11512, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320404

RESUMO

Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.

7.
Nat Commun ; 13(1): 5244, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068233

RESUMO

Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.

8.
Chem Sci ; 13(32): 9392-9400, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093002

RESUMO

The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground state modulate the charge-density distribution in a donor-bridge-acceptor molecule in solution. The vibrationally-induced change, visualised by transient absorption spectroscopy with a mid-infrared pump and a visible probe, is mechanistically resolved by ab initio molecular dynamics simulations. Mapping the potential energy landscape attributes the observed charge-coupled coherent nuclear motions to the population of the initial segment of a double-bond isomerization channel, also seen in biological molecules. Our results illustrate the pivotal role of pre-twisted molecular geometries in enhancing the transfer of vibrational energy to specific molecular modes, prior to thermal redistribution. This motivates the search for synthetic strategies towards achieving potentially new infrared-mediated chemistry.

9.
Phys Chem Chem Phys ; 24(31): 18635-18644, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35896104

RESUMO

Supramolecular cavities have been traditionally used to stabilize reactive redox intermediates. Recently with the success of multiple new photoredox catalytic strategies that use supramolecular cages, there is a growing demand for photogeneration strategies of diverse reactive intermediates inside confined spaces, which will drive enzyme-like catalysis in real time. Here we report the excited state dynamics of a redox-active TTF radical cation and its corresponding dimethyl-derivative DiMeTTF inside a confined supramolecular cavity. We prepare the radical cation by spontaneous oxidation of neutral TTF upon incarceration inside a water-soluble nanocage Pd6L412+, and characterize it with a combination of resonance Raman and electron paramagnetic resonance spectroscopy. Using broadband transient absorption spectroscopy, we demonstrate that the confined native TTF radical cation and its dimethyl derivative upon photoexcitation rapidly de-excite to form the hot ground state, thereby inhibiting further oxidation to a TTF+2 dication. We discuss our results in the context of excited state crossings of the radical cation potentials as well as modifying the cage energetics to generate a stable dication. Our work has important implications for the usage of such radical cations for photoactivated catalysis.


Assuntos
Água , Catálise , Cátions/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução
10.
J Phys Chem B ; 126(29): 5390-5399, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35797135

RESUMO

The blue color in metalloprotein azurin has traditionally been attributed to the intense cysteine-to-Cu2+ ligand-to-metal charge transfer transition centered at 628 nm. Although resonance Raman measurements of the Cu2+ active site have implied that the LMCT transition electronically couples to the protein scaffold well beyond its primary metal-ligand coordination shell, the structural extent of this electronic coupling and visualization of the protein-mediated charge transfer dynamics have remained elusive. Here, using femtosecond broadband transient absorption and impulsive Raman spectroscopy, we provide direct evidence for a rapid relaxation between two distinct charge transfer states, having different spatial delocalization, within ∼300 fs followed by recombination of charges in subpicosecond time scales. We invoke the formation of a protein-centered radical cation, possibly Trp48 or a Phe residue, within 100 fs substantiating the long-range electronic coupling for the first time beyond the traditional copper active site. The Raman spectra of the excited CT state show the presence of protein-centric vibrations along with the vibrational modes assigned to the copper active site. Our results demonstrate a large delocalization length scale of the initially populated CT state, thereby highlighting the possibility of exploiting azurin photochemistry for energy conversion techniques.


Assuntos
Azurina , Metaloproteínas , Azurina/química , Domínio Catalítico , Cobre/química , Ligantes , Metaloproteínas/metabolismo
11.
Angew Chem Int Ed Engl ; 61(16): e202116094, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129254

RESUMO

The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.

12.
Phys Chem Chem Phys ; 23(15): 9280-9284, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885087

RESUMO

Photoexciting charge transfer (CT) transitions arising from host-guest interactions in a confined environment can efficiently yield kinetically trapped radicals. In order to predispose these photogenerated radicals for diffusion limited reactions it becomes imperative to understand the nature of the host-guest CT interactions in the ground and excited states. Here we probe the heterogeneity of guest orientations and the ensuing excited state charge transfer dynamics of an electron-rich molecular probe N,N-dimethylaminobenzonitrile (DMABN) incarcerated inside an electron deficient water-soluble cationic Pd6L412+ nanohost. Using a combination of 1H-NMR, resonance Raman spectrosocopy, and pump-probe spectroscopy we highlight the necessary challenges that need to be addressed in order to use molecular cages as photocatalytic reaction vessels.

13.
J Phys Chem Lett ; 12(5): 1468-1474, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33528257

RESUMO

Molecular triplet excitons produced through singlet fission (SF) usually have shorter triplet lifetimes due to exciton-exciton recombination and relaxation pathways, thereby resulting in complex device architectures for SF-boosted solar cells. Using broadband transient absorption spectroscopy, we here show that the photoexcitation of nanostructured lycopene H-aggregates at room temperature produces free triplets with an unprecedented 35-fold enhancement in the lifetime compared to those localized on the monomer backbone. The observed rise of a spectrally blue-shifted correlated T-T pair state in ∼19 ps with distinct vibronic features provides the basis for SF-induced triplet generation.


Assuntos
Corantes Fluorescentes/química , Licopeno/química , Nanoestruturas/química , Dimerização , Cinética , Conformação Molecular , Espectrometria de Fluorescência , Relação Estrutura-Atividade
14.
J Phys Chem Lett ; 11(12): 4842-4848, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32460494

RESUMO

Optically triggered twisted intramolecular charge transfer (TICT) states in donor-acceptor chromophores form the molecular basis for designing bioimaging probes that sense polarity, microviscosity, and pH in vivo. However, a lack of predictive understanding of the "twist" localization precludes a rational design of TICT-based dyes. Here, using femtosecond stimulated Raman spectroscopy, we reveal a distinct Raman signature of the TICT state for a stilbazolium-class mitochondrial staining dye. Resonance-selective probing of 4-N,N-diethylamino-4″-N'-methyl-stilbazolium tosylate (DEST) tracks the excited-state structure of the dye as it relaxes to a TICT state on a picosecond time scale. The appearance of a remarkably blue-shifted C=C stretching mode at 1650 cm-1 in the TICT state is attributed to the "twist" of a single bond adjacent to the ethylenic π-bridge in the DEST backbone based on detailed electronic structure calculations and vibrational mode analysis. Our work demonstrates that the π-bridge, connecting the donor and acceptor moieties, influences the spatial location of the "twist" and offers a new perspective for designing organelle-specific probes through cogent tuning of backbone dynamics.

15.
Sci Adv ; 5(2): eaav4806, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30801018

RESUMO

Light energy absorbed by molecules can be harnessed to activate chemical bonds with extraordinary speed. However, excitation energy redistribution within various molecular degrees of freedom prohibits bond-selective chemistry. Inspired by enzymes, we devised a new photocatalytic scheme that preorganizes and polarizes target chemical bonds inside water-soluble cationic nanocavities to engineer selective functionalization. Specifically, we present a route to photoactivate weakly polarized sp3 C─H bonds in water via host-guest charge transfer and control its reactivity with aerial O2. Electron-rich aromatic hydrocarbons self-organize inside redox complementary supramolecular cavities to form photoactivatable host-guest charge transfer complexes in water. An ultrafast C─H bond cleavage within ~10 to 400 ps is triggered by visible-light excitation, through a cage-assisted and solvent water-assisted proton-coupled electron transfer reaction. The confinement prolongs the lifetime of the carbon-centered radical to enable a facile yet selective reaction with molecular O2 leading to photocatalytic turnover of oxidized products in water.

16.
Nat Commun ; 10(1): 33, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604740

RESUMO

The formation of two triplet excitons at the cost of one photon via singlet exciton fission in organic semiconductors can potentially enhance the photocurrent in photovoltaic devices. However, the role of spin density distribution in driving this photophysical process has been unclear until now. Here we present the significance of electronic spin density distribution in facilitating efficient intramolecular singlet exciton fission (iSEF) in π-bridged pentacene dimers. We synthetically modulate the spin density distribution in a series of pentacene dimers using phenyl-, thienyl- and selenyl- flanked diketopyrrolopyrrole (DPP) derivatives as π-bridges. Using femtosecond transient absorption spectroscopy, we find that efficient iSEF is only observed for the phenyl-derivative in ~2.4 ps while absent in the other two dimers. Electronic structure calculations reveal that phenyl-DPP bridge localizes α- and ß-spin densities on distinct terminal pentacenes. Upon photoexcitation, a spin exchange mechanism enables iSEF from a singlet state which has an innate triplet pair character.

17.
Nat Commun ; 9(1): 72, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298980

RESUMO

The original version of this Article omitted the following from the Acknowledgements:"Satish Patil thanks Department of Science and Technology, New Delhi, India for a Swarnajayanti fellowship."This has now been corrected in both the PDF and HTML versions of the Article.

18.
Phys Chem Chem Phys ; 20(9): 6060-6072, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29270585

RESUMO

Achieving synthetic control over light-driven molecular dynamics is essential for designing complex molecule-based devices. Here we design a novel coumarin-imidazole conjugate (1) whose excited state structural dynamics are primarily controlled by a distant intramolecular H-bonding interaction within the backbone. The coumarin conjugate is based on a 1,2,4,5-aryl substituted imidazole framework (aryl = -Ph and -PhOH) covalently connected to the coumarin moiety via a C-N bond. A carefully positioned OH group in the aryl part of the imidazole fragment resulted in achieving two dissimilar O-HN and O-HO distal intramolecular hydrogen bonding interactions. NMR studies in conjunction with density functional theory (DFT) at the B3LYP/6-311G(d,p) level of theory show the existence of two ground state conformers with a rotational barrier of 6.12 kcal mol-1. Due to the presence of conformational isomers of 1, the local excited state dynamics of the parent coumarin get biased towards a long-lived fluorescence state with diminished non-radiative decay channels. Time-resolved emission studies show an ∼4-5 times increase in the excited state lifetime in 1 when compared to coumarin-imidazole conjugates, 2 and 3, without the OH group. Solvent dependent studies show that solvent polarity, the H-bond donating ability and viscosity dictate the conformational distribution in the ground state and the dynamical evolution to the final emissive state. Our studies highlight the importance of rotamerism around the C1-C4 single bond, which leads to rigidification along the coumarin-imidazole backbone through a combination of distal H-bonding and solvent interactions. The concept of new emission signaling pathways caused by conformational switching between two states offers a new paradigm to introduce functional allostery in macromolecular backbones.

19.
Nat Commun ; 8(1): 1716, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170455

RESUMO

Donor-π-acceptor conjugated polymers form the material basis for high power conversion efficiencies in organic solar cells. Large dipole moment change upon photoexcitation via intramolecular charge transfer in donor-π-acceptor backbone is conjectured to facilitate efficient charge-carrier generation. However, the primary structural changes that drive ultrafast charge transfer step have remained elusive thereby limiting a rational structure-function correlation for such copolymers. Here we use structure-sensitive femtosecond stimulated Raman spectroscopy to demonstrate that π-bridge torsion forms the primary reaction coordinate for intramolecular charge transfer in donor-π-acceptor copolymers. Resonance-selective Raman snapshots of exciton relaxation reveal rich vibrational dynamics of the bridge modes associated with backbone planarization within 400 fs, leading to hot intramolecular charge transfer state formation while subsequent cooling dynamics of backbone-centric modes probe the charge transfer relaxation. Our work establishes a phenomenological gating role of bridge torsions in determining the fundamental timescale and energy of photogenerated carriers, and therefore opens up dynamics-based guidelines for fabricating energy-efficient organic photovoltaics.

20.
Chem Commun (Camb) ; 53(67): 9348-9351, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783196

RESUMO

Synthetic control of peptide-based supramolecular assemblies can provide molecular cues to understand protein aggregation while also inspiring the development of novel chemical biology tools to deliver cargoes inside cells. Here we show that the trans-to-cis photoisomerization of a pendant azo-group covalently attached to a Phe-Phe dipeptide can comprehensively 'turn-off' its native fibrillation propensity as well as provide an optical handle to reversibly switch the aggregate morphology from fibril to vesicle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...