Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 24(7): 514-532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288814

RESUMO

BACKGROUND: Cancer is one of the most common reasons for mortality in the world. A continuous effort to develop effective anti-cancer drugs with minimum side effects has become necessary. The use of small-molecule drugs has revolutionized cancer research by inhibiting cancer cell survival and proliferation. Quinazolines are a class of bioactive heterocyclic compounds with active pharmacophores in several anti-cancer drugs. Such small molecule inhibitors obstruct the significant signals responsible for cancer cell development, thus blocking these cell signals to prevent cancer development and spread. OBJECTIVE: In the current study, novel quinazoline derivatives structurally similar to erlotinib were synthesized and explored as novel anti-cancer agents. METHODS: All the synthesized molecules were confirmed by spectroscopic techniques like 1H NMR, 13C NMR, and ESI-MS. Various techniques were applied to study the protein-drug interaction, DFT analysis, Hirshfeld surface, and target prediction. The molecules were screened in vitro for their anti-cancer properties against 60 human tumor cell lines. The growth inhibitory properties of a few compounds were studied against the MCF7 breast cancer cell line. RESULTS: The activity of compounds 9f, 9o, and 9s were found to be active. However, compound 9f is more active when compared with other compounds. CONCLUSION: Some synthesized compounds were active against different cancer cell lines. The in-vitro study results were found to be in agreement with the predictions from in-silico data. The selected molecules were further subjected to get the possible mechanism of action against different cancer cells.


Assuntos
Antineoplásicos , Proliferação de Células , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Quinazolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...