Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 191: 106147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611376

RESUMO

The estuaries provide the key pathway for travelling carbon across the land-ocean interfaces and behave as both source and sink of greenhouse gases (GHGs) in water-atmosphere systems. The sink-source characteristics of estuaries for GHGs vary spatially. The primary driving factors are adjacent ecologies (agriculture, aquaculture, etc.) and proximities to the sea. To study the sink-source characteristics of estuaries for GHGs (methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)), the water samples were collected from 53 different locations in the estuaries for estimation of dissolved GHGs concentration and air-water GHGs exchanges. The locations represent five zones (Zone I, II, III, IV and V) based on the type and degradation status of mangroves (degraded and undisturbed), anthropogenic activities, and distance from the sea. Zone I, III, V represents to the degraded mangroves far from sea, whereas, Zone II, IV surrounded by undisturbed mangroves and nearer to sea. The average dissolved CH4 concentrations were higher in the estuaries which were adjacent to degraded mangroves (154.4 nmol L-1) than undisturbed mangroves (81.7 nmol L-1). Further, the average dissolved N2O concentrations were 48% higher in the estuaries nearer to degraded mangroves than that of undisturbed ones. Among the degraded mangrove sites, the dissolved CO2 concentrations were higher at Zone I (30.1 µmol L-1) followed by Zone III and IV, whereas in undisturbed sites, it was higher in Zone IV (22.3 µmol L-1) than Zone II (17.6 µmol L-1). Among the 53 locations, 36, 51 and 33 locations acted as a sink (negative value of exchanges) for CH4, N2O and CO2, respectively. The higher sink potential for CH4 was recorded to those estuaries adjacent to undisturbed mangroves (-791.69 µmol m-2 d-1) than the degraded ones (-23.18 µmol m-2 d-1). Similarly, the average air-water N2O and CO2 exchanges were more negative in the estuaries which were nearer to undisturbed mangroves indicating higher sink potential. The pH, and salinity of the estuary water were negatively correlated with air-water CH4 and N2O exchanges, whereas those were positively correlated with CO2 exchanges. Significantly lower dissolved GHGs and air-water GHGs exchange was observed in the estuaries adjacent to the undisturbed mangrove as compared to the degraded mangrove. The reason behind higher sink behaviours of estuaries nearer to undisturbed mangroves are higher intrusion of seawater, less nutrient availability, higher salinity, low carbon contents and alkaline pH compared to estuaries adjacent to degraded mangroves and far from sea.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Estuários , Áreas Alagadas , Dióxido de Carbono/análise , Monitoramento Ambiental , Água , Metano/análise , Índia
2.
Life (Basel) ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36294971

RESUMO

The exchange of CO2 between the air-water interfaces of estuaries is crucial from the perspective of the global carbon cycle and climate change feedback. In this regard, we evaluated the air-water CO2 exchanges in two major estuaries-the Mahanadi estuary (ME) and the Dhamra estuary (DE) in the northern part of the Bay of Bengal, India. Biogeochemical properties of these estuarine waters were quantified in three distinct seasons, namely, pre-monsoon (March to May), monsoon (June to October), and post-monsoon (November to February). The significant properties of water, such as the water temperature, pH, salinity, nutrients, dissolved oxygen, chlorophyll-a (chl a), and photosynthetic pigment fluorescence of phytoplankton, were estimated and correlated with CO2 fluxes. We found that the ME acted as a source of CO2 fluxes in the monsoon and post-monsoon, while DE acted as a sink during the monsoon. The stepwise regression model showed that the fluxes were primarily driven by water temperature, pH, and salinity, and they correlated well with the phytoplankton characteristics. The chl a content, fluorescence yield, and phycobilisomes-to-photosystem II fluorescence ratios were major drivers of the fluxes. Therefore, for predicting air-water CO2 exchanges precisely in a large area over a seasonal and annual scale in the estuaries of the Bay of Bengal, India, critical key parameters such as water temperature, pH, salinity, chl a, and fluorescence yield of phytoplankton should be taken into consideration. However, the responses of phytoplankton, both in terms of production and CO2 capture, are critical research areas for a better understanding of air-water CO2 exchanges in coastal ecology under climate change scenarios.

3.
J Basic Microbiol ; 59(10): 963-978, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410860

RESUMO

The diversity of cellulolytic bacteria from the rice-pulse system can be sourced for identification of efficient cellulose decomposing microbial strains. In the present study, the abundance, structural diversity, and cellulolytic potential of the culturable bacterial community were studied in 5-year old rice-pulse system under different resource conservation technologies. Higher cellulose (68% more) and xylanase (35% more) activities were observed under zero tilled soil. The populations of cellulolytic bacteria were significantly higher (44%) in zero tillage (ZT) treatment than those of conventional practice. Results revealed that the cellulolytic bacterial diversity was found to be significantly higher under ZT practice, but the present population may not be sufficient for effective recycling of organic wastes in this system. Out of 290 bacterial isolates, 20 isolates had significantly higher cellulolytic activities, of which the top three superior isolates were received from ZT practice. The cellulolytic bacterial diversity based on 16S rDNA sequencing data revealed that the Firmicutes was the most dominant phyla and the Bacillus spp. were the common genus, the observation also showed that there were 17 different haplotypes were recorded among 20 isolates of cellulolytic bacteria. The present findings indicated that long-term ZT in the rice-pulse system could be a unique source for efficient cellulose decomposing bacteria and further the efficient bacterial strains isolated from this system can be used as efficient bioinoculants for in situ as well as ex-situ decomposition of rice straw particularly in conservation agriculture.


Assuntos
Bactérias/metabolismo , Biodiversidade , Celulose/metabolismo , Oryza/microbiologia , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Celulose/análise , Conservação dos Recursos Naturais , Haplótipos , Consórcios Microbianos/genética , Oryza/química , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...