Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 116(4): 447-459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35366107

RESUMO

Event-driven intermittent feedback control is a form of feedback control in which the corrective control action is only initiated intermittently when the variables of interest exceed certain threshold criteria. It has been reported in the literature that the CNS uses an event-driven intermittent control strategy to stabilize the human upright posture. However, whether the threshold criteria may change under different postural task conditions is not yet well understood. We employ a numerical study with inverted pendulum models and an experimental study with 51 young healthy individuals (13 females and 38 males; age: 27.8 ± 6.5 years) with stabilogram-diffusion, temporal and spectral analysis applied to COP (Center of Pressure) trajectories measured from these experiments to examine this aspect. The present study provides compelling evidence that inducing a natural arm swing during quiet stance appears to lead to higher sensory dead zone in neuronal control reflecting higher intermittency thresholds in active feedback control and a corresponding lower sensory dependence. Beyond the obvious scientific interest in understanding this aspect of how CNS controls the standing posture, an investigation of the said control strategy may subsequently help uncover insights about how control of quiet stance degrades with age and in diseased conditions. Additionally, such an understanding will also be of interest to the humanoid robotics community as it may lead to insights leading to improving control strategies for posture control in robots.


Assuntos
Equilíbrio Postural , Robótica , Adulto , Difusão , Retroalimentação , Feminino , Humanos , Masculino , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto Jovem
2.
J Biomech ; 105: 109791, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32423540

RESUMO

Postural impairment due to neuro-degenerative disorders such as Parkinson's Disease (PD) leads to restricted gait patterns, fall-related injuries, decreased mobility, and loss of functional independence. Though several clinical and posturographic studies have attempted to reveal the complex pathophysiology involved in PD, the diversity of Parkinsonian population makes them unclear and sometimes even contradictory. For instance, studies related to the Center of Pressure (CoP) sway during quiet stance in PD patients highlight both increase and reduction of magnitude in contrast to age-matched healthy individuals. A possible explanation for this contradiction is presented in this article. While the presence of intermittent control has been observed in postural control in human quiet stance, we hypothesize that one of the factors that affects postural instability in PD might be the increase in intermittency in active feedback control. Using a simulation model representing the Anterior-Posterior dynamics of human quiet standing, the intermittent control strategy is first contrasted against continuous control strategy in terms of stability, energy efficiency and settling time, thus establishing the inherent advantages of an intermittent control strategy. Further, the ability of the intermittent control strategy to explain several clinical observations in PD is demonstrated. An experimental pilot study is also conducted to support the simulation study, and several body sway parameters derived from recordings of CoP are presented. The presented results are in close agreement with reported clinical observations and may also prove useful for the assessment of disease progression and future fall risk.


Assuntos
Doença de Parkinson , Equilíbrio Postural , Progressão da Doença , Marcha , Humanos , Projetos Piloto
3.
IEEE Trans Nanobioscience ; 16(8): 727-743, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28504945

RESUMO

3-D network-on-chip (NoC) systems are getting popular among the integrated circuit (IC) manufacturer because of reduced latency, heterogeneous integration of technologies on a single chip, high yield, and consumption of less interconnecting power. However, the addition of functional units in the -direction has resulted in higher on-chip temperature and appearance of local hotspots on the die. The increase in temperature degrades the performance, lifetime, and reliability, and increases the maintenance cost of 3-D ICs. To keep the heat within an acceptable limit, floorplanning is the widely accepted solution. Proper arrangement of functional units across different layers can lead to uniform thermal distribution in the chip. For systems with high density of elements, few hotspots cannot be eliminated in the floorplanning approach. To overcome, liquid microchannel cooling technology has emerged as an efficient and scalable solution for 3-D NoC. In this paper, we propose a novel hybrid algorithm combining both floorplanning, and liquid microchannel placement to alleviate the hotspots in high-density systems. A mathematical model is proposed to deal with heat transfer due to diffusion and convention. The proposed approach is independent of topology. Three different topologies: 3-D stacked homogeneous mesh architecture, 3-D stacked heterogeneous mesh architecture, and 3-D stacked ciliated mesh architecture are considered to check the effectiveness of the proposed algorithm in hotspot reduction. A thermal comparison is made with and without the proposed thermal management approach for the above architectures considered. It is observed that there is a significant reduction in on-chip temperature when the proposed thermal management approach is applied.


Assuntos
Algoritmos , Equipamentos e Provisões Elétricas , Modelos Genéticos , Nanotecnologia/métodos , Biomimética , Desenho de Equipamento , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...