Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(4): 220, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684578

RESUMO

PURPOSE: The purpose of this study is to develop accurate and automated detection and segmentation methods for brain tumors, given their significant fatality rates, with aggressive malignant tumors like Glioblastoma Multiforme (GBM) having a five-year survival rate as low as 5 to 10%. This underscores the urgent need to improve diagnosis and treatment outcomes through innovative approaches in medical imaging and deep learning techniques. METHODS: In this work, we propose a novel approach utilizing the two-headed UNetEfficientNets model for simultaneous segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) images. The model combines the strengths of EfficientNets and a modified two-headed Unet model. We utilized a publicly available dataset consisting of 3064 brain MR images classified into three tumor classes: Meningioma, Glioma, and Pituitary. To enhance the training process, we performed 12 types of data augmentation on the training dataset. We evaluated the methodology using six deep learning models, ranging from UNetEfficientNet-B0 to UNetEfficientNet-B5, optimizing the segmentation and classification heads using binary cross entropy (BCE) loss with Dice and BCE with focal loss, respectively. Post-processing techniques such as connected component labeling (CCL) and ensemble models were applied to improve segmentation outcomes. RESULTS: The proposed UNetEfficientNet-B4 model achieved outstanding results, with an accuracy of 99.4% after postprocessing. Additionally, it obtained high scores for DICE (94.03%), precision (98.67%), and recall (99.00%) after post-processing. The ensemble technique further improved segmentation performance, with a global DICE score of 95.70% and Jaccard index of 91.20%. CONCLUSION: Our study demonstrates the high efficiency and accuracy of the proposed UNetEfficientNet-B4 model in the automatic and parallel detection and segmentation of brain tumors from MRI images. This approach holds promise for improving diagnosis and treatment planning for patients with brain tumors, potentially leading to better outcomes and prognosis.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/classificação , Glioblastoma/patologia , Glioma/diagnóstico por imagem , Glioma/classificação , Glioma/patologia
2.
Comput Biol Med ; 150: 106142, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182760

RESUMO

Cardiovascular disease (CVD) is the most fatal disease in the world, so its accurate and automated detection in the early stages will certainly support the medical expert in timely diagnosis and treatment, which can save many lives. Many types of research have been carried out in this regard, but due to the problem of data imbalance in the medical and health care sector, it may not provide the desired results in all aspects. To overcome this problem, a sequential ensemble technique has been proposed that detects 6 types of cardiac arrhythmias on large ECG imbalanced datasets, and the data imbalanced issue of the ECG dataset has been addressed by using a hybrid data resampling technique called "Synthetically Minority Oversampling Technique and Tomek Link (SMOTE + Tomek)". The sequential ensemble technique employs two distinct deep learning models: Convolutional Neural Network (CNN) and a hybrid model, CNN with Long Short-Term Memory Network (CNN-LSTM). The two standard datasets "MIT-BIH arrhythmias database" (MITDB) and "PTB diagnostic database" (PTBDB) are combined and extracted 23, 998 ECG beats for the model validation. In this work, the three models CNN, CNN-LSTM, and ensemble approach were tested on four kinds of ECG datasets: the original data (imbalanced), the data sampled using a random oversampled technique, data sampled using SMOTE, and the dataset resampled using SMOTE + Tomek algorithm. The overall highest accuracy was obtained of 99.02% on the SMOTE + Tomek sampled dataset by ensemble technique and the minority class accuracy result (Recall) is improved by 20% as compared to the imbalanced data.


Assuntos
Eletrocardiografia , Cardiopatias Congênitas , Humanos , Redes Neurais de Computação , Algoritmos , Arritmias Cardíacas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...