Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(12): 20956-20963, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36445838

RESUMO

We present a method utilizing an applied electrostatic potential for suppressing the broad defect bound excitonic emission in two-dimensional materials (2DMs) which otherwise inhibits the purity of strain induced single photon emitters (SPEs). Our heterostructure consists of a WSe2 monolayer on a polymer in which strain has been deterministically introduced via an atomic force microscope (AFM) tip. We show that by applying an electrostatic potential, the broad defect bound background is suppressed at cryogenic temperatures, resulting in a substantial improvement in single photon purity demonstrated by a 10-fold reduction of the correlation function g(2)(0) value from 0.73 to 0.07. In addition, we see a 2-fold increase in the intensity of the SPEs as well as the ability to activate/deactivate the emitters at certain wavelengths. Finally, we present an increase in the operating temperature of the SPE up to 110 K, a 50 K increase when compared with the results when no electrostatic potential is present.

2.
J Chem Phys ; 152(1): 014709, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914766

RESUMO

A synthetic challenge in faceted metal oxide nanocrystals (NCs) is realizing tunable localized surface plasmon resonance (LSPR) near-field response in the infrared (IR). Cube-shaped nanoparticles of noble metals exhibit LSPR spectral tunability limited to visible spectral range. Here, we describe the colloidal synthesis of fluorine, tin codoped indium oxide (F,Sn:In2O3) NC cubes with tunable IR range LSPR for around 10 nm particle sizes. Free carrier concentration is tuned through controlled Sn dopant incorporation, where Sn is an aliovalent n-type dopant in the In2O3 lattice. F shapes the NC morphology into cubes by functioning as a surfactant on the {100} crystallographic facets. Cube shaped F,Sn:In2O3 NCs exhibit narrow, shape-dependent multimodal LSPR due to corner, edge, and face centered modes. Monolayer NC arrays are fabricated through a liquid-air interface assembly, further demonstrating tunable LSPR response as NC film nanocavities that can heighten near-field enhancement (NFE). The tunable F,Sn:In2O3 NC near-field is coupled with PbS quantum dots, via the Purcell effect. The detuning frequency between the nanocavity and exciton is varied, resulting in IR near-field dependent enhanced exciton lifetime decay. LSPR near-field tunability is directly visualized through IR range scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). STEM-EELS mapping of the spatially confined near-field in the F,Sn:In2O3 NC array interparticle gap demonstrates elevated NFE tunability in the arrays.

3.
ACS Nano ; 13(1): 904-912, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30608637

RESUMO

We present a paradigm for encoding strain into two-dimensional materials (2DMs) to create and deterministically place single-photon emitters (SPEs) in arbitrary locations with nanometer-scale precision. Our material platform consists of a 2DM placed on top of a deformable polymer film. Upon application of sufficient mechanical stress using an atomic force microscope tip, the 2DM/polymer composite deforms, resulting in formation of highly localized strain fields with excellent control and repeatability. We show that SPEs are created and localized at these nanoindents and exhibit single-photon emission up to 60 K, the highest temperature reported in these materials. This quantum calligraphy allows deterministic placement and real time design of arbitrary patterns of SPEs for facile coupling with photonic waveguides, cavities, and plasmonic structures. In addition to enabling versatile placement of SPEs, these results present a general methodology for imparting strain into 2DM with nanometer-scale precision, providing an invaluable tool for further investigations and future applications of strain engineering of 2DM and 2DM devices.

4.
Nat Commun ; 8: 15552, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28656961

RESUMO

In atomically thin transition metal dichalcogenides (TMDs), reduced dielectric screening of the Coulomb interaction leads to strongly correlated many-body states, including excitons and trions, that dominate the optical properties. Higher-order states, such as bound biexcitons, are possible but are difficult to identify unambiguously using linear optical spectroscopy methods. Here, we implement polarization-resolved two-dimensional coherent spectroscopy (2DCS) to unravel the complex optical response of monolayer MoSe2 and identify multiple higher-order correlated states. Decisive signatures of neutral and charged inter-valley biexcitons appear in cross-polarized two-dimensional spectra as distinct resonances with respective ∼20 and ∼5 meV binding energies-similar to recent calculations using variational and Monte Carlo methods. A theoretical model considering the valley-dependent optical selection rules reveals the quantum pathways that give rise to these states. Inter-valley biexcitons identified here, comprising of neutral and charged excitons from different valleys, offer new opportunities for developing ultrathin biexciton lasers and polarization-entangled photon sources.

5.
Nano Lett ; 16(8): 5109-13, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428509

RESUMO

The optical properties of semiconducting transition metal dichalcogenides are dominated by both neutral excitons (electron-hole pairs) and charged excitons (trions) that are stable even at room temperature. While trions directly influence charge transport properties in optoelectronic devices, excitons may be relevant through exciton-trion coupling and conversion phenomena. In this work, we reveal the coherent and incoherent nature of exciton-trion coupling and the relevant time scales in monolayer MoSe2 using optical two-dimensional coherent spectroscopy. Coherent interaction between excitons and trions is definitively identified as quantum beating of cross peaks in the spectra that persists for a few hundred femtoseconds. For longer times up to 10 ps, surprisingly, the relative intensity of the cross peaks increases, which is attributed to incoherent energy transfer likely due to phonon-assisted up-conversion and down-conversion processes that are efficient even at cryogenic temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...