Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473685

RESUMO

Superlubricity, the tribological regime where the coefficient of friction between two sliding surfaces almost vanishes, is currently being investigated as a viable route towards the energy efficiency envisioned by major long-term strategies for a sustainable future. This current study provides new insights towards the development of self-lubricating systems by material and topological design, systems which tend to exhibit near-superlubric tribological performance, by reporting the synergistic effect of selective surface patterning and presence of carbon micro/nano-fillers on the frictional coefficients of additively manufactured structures. Geometric and biomimetic surface patterns were prepared by fused deposition modelling (FDM), using printing filaments of a polymeric matrix infused with graphene nanoplatelets (GNPs) and carbon fibers (Cf). The calorimetric, spectroscopic, mechanical and optical microscopy characterization of the starting materials and as-printed structures provided fundamental insights for their tribological characterization under a ball-on-disk configuration. In geometrically patterned PLA-based structures, a graphene presence reduced the friction coefficient by ca. 8%, whereas PETG exhibited the lowest coefficients, in the vicinity of 0.1, indicating a high supelubric potential. Biomimetic patterns exhibited an inferior frictional response due to their topologically and tribologically anisotropy of the surfaces. Overall, a graphene presence in the starting materials demonstrated great potential for friction reduction, while PETG showed a tribological performance not only superior to PLA, but also compatible with superlubric performance. Methodological and technical challenges are discussed in the text.

2.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420620

RESUMO

This study investigated the innovative use of magnetoelastic sensors to detect the formation of single cracks in cement beams under bending vibrations. The detection method involved monitoring changes in the bending mode spectrum when a crack was introduced. The sensors, functioning as strain sensors, were placed on the beams, and their signals were detected non-invasively using a nearby detection coil. The beams were simply supported, and mechanical impulse excitation was applied. The recorded spectra displayed three distinct peaks representing different bending modes. The sensitivity for crack detection was determined to be a 24% change in the sensing signal for every 1% decrease in beam volume due to the crack. Factors influencing the spectra were investigated, including pre-annealing of the sensors, which improved the detection signal. The choice of beam support material was also explored, revealing that steel yielded better results than wood. Overall, the experiments demonstrated that magnetoelastic sensors enabled the detection of small cracks and provided qualitative information about their location.


Assuntos
Citoesqueleto , Vibração , Modalidades de Fisioterapia , Registros , Aço
3.
Mater Horiz ; 10(9): 3404-3415, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37350473

RESUMO

Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior. Secondly, a microwave-transparent, low-infrared-emissivity MXene metasurface is constructed in situ to permit wide-temperature-range infrared camouflage. Finally, the outstanding spectral selectivity of MXene enables camouflage against 1.06 µm-lidar and visible-light detection. As a result, the as-fabricated [110]-oriented GGS M@SiOC metamaterials exhibit outstanding wide-temperature-range multispectral camouflage: (i) ultrabroadband microwave absorption exceeding 80% in the X-Ku band from room temperature (RT) to 500 °C with absorption above 86.0% (91.4% on average) at 500 °C; (ii) excellent long-wavelength infrared camouflage for object temperatures from RT to 450 °C, reaching an infrared signal intensity of 78.5% for objects at 450 °C; and (iii) camouflage against both 1.06 µm-lidar and dark environment. Compared with traditional hierarchical metamaterials necessitating complex micro/nano-fabrication processes, this work provides a novel pathway toward the realization of structurally integrated multispectral stealth components by combining flexible metastructure design and high-fidelity additive manufacturing.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678021

RESUMO

Ultrathin carbon nanomembranes (CNMs) are two-dimensional materials (2DM) of a few nm thickness with sub-nm intrinsic pores that mimic the biofiltration membranes found in nature. They enable highly selective, permeable, and energy-efficient water separation and can be produced at large scales on porous substrates with tuned properties. The present work reports the mechanical performance of such CNMs produced by p-nitrobiphenyl phosphonic acid (NBPS) or polyvinylbiphenyl (PVBP) and their composite membranes of microporous supporting substrates, which constitute indispensable information for ensuring their mechanical stability during operation. Measuring the nanomechanical properties of the ultrathin material was achieved by atomic force microscopy (AFM) on membranes both supported on flat substrates and suspended on patterned substrates ("composite membrane"). The AFM analysis showed that the CNMs presented Young's modulus in the range of 2.5-8 GPa. The composite membranes' responses were investigated by tensile testing in a micro-tensile stage as a function of substrate thickness and substrate pore density and diameter, which were found to affect the mechanical properties. Thermogravimetric analysis was used to investigate the thermal stability of composite membranes at high temperatures. The results revealed the structural integrity of CNMs, while critical parameters governing their mechanical response were identified and discussed.

5.
Sensors (Basel) ; 21(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573281

RESUMO

Recent findings have brought forward the potential of carbon nano-species, especially nanotubes and graphene, to impart exceptional multifunctional potential to cement, offering simultaneous enhancement of mechanical, fracture mechanical and electrical properties. While available knowledge on the topic is still limited, there is a complete absence of direct comparisons of the potential of the nano-species to improve strength and toughness and provide multifunctionality to the mortars. The study offers a comprehensive overview of these potentials, for mortars modified with pure graphene nanoplatelets and carbon nanotubes at consistent, directly comparable, concentrations up to 1.2 wt.%. Testing included flexure under pure bending moments, axial compression, electrical resistivity measurements and fracture tests under three point bending configuration; the latter were also independently assessed by acoustic emission. Differences in documented properties and optimal concentrations associated with improved mechanical performance were directly compared and rationalized in terms of nanospecies morphology. Dramatic, statistically consistent improvements in fracture behavior, up to 10-fold of control values, were documented for specific nanofiller concentrations, indicating an excellent potential of the material system for contemporary smart construction applications. An exceptionally favorable comparison of acoustic emission and fracture energy data confirmed that the non-destructive technique can independently assess the fracture performance of mortars with exceptional precision.

6.
ACS Nano ; 15(1): 240-257, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356150

RESUMO

The rapid development of three-dimensional (3D) printing technology opens great opportunities for the design of various multiscale lubrication structures. 3D printing allows high customization of arbitrary complex structures and rapid prototyping of objects, which provides an avenue to achieve effective lubrication. Current experimental observations on superlubricity are limited to atomically smooth clean surfaces, extreme operating conditions, and nano- or microscales. With the in-depth exploration of 3D printed lubrication, construction of multifunctional 3D structures with refined dimensions spanning from micronanoscale to macroscale is increasingly regarded as an important means to approach superlubricity and has aroused great scientific interest. To document recent advances in 3D printing for structural lubrication, a detailed literature review is provided. Emphasis is given on the design and lubrication performance of geometric and bioinspired lubrication structures with characteristic dimensions. The material requirements, merits, drawbacks, and representative applications of various 3D printing techniques are summarized. Potential future research trends aiming at the design strategy and manufacturing process of 3D printed lubrication structures are also highlighted.

7.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066238

RESUMO

Τhe present study investigates the pore structure and transport properties of carbon nanotube-modified cementitious mortars after exposure to freeze-thaw cycles and immersion to sulfate ion solution (sulfate attack) and compares them to those of un-exposed mortars. The effect of parameters related to carbon nanotube content (within the range of 0.2-0.8 wt.%) and type of dispersant (superplasticizer/surfactant) are investigated. It is found that carbon nanotube inclusion results, overall, in a significant drop of the total porosity before exposure. Results demonstrate that environmental exposure leads to a reduction of the fraction of small diameter pores and a respective increase in capillary porosity for both dispersive agents compared to un-exposed specimens. Diffusion coefficients of nano-modified specimens are lower compared to those of un-modified mortars, both before exposure and after sulfate attack. In the case of freeze-thaw cycling, the diffusion coefficients were found to be higher in carbon nanotube-modified mortars when surfactants were used as dispersants, although with improved gas permeability values.

8.
Sensors (Basel) ; 20(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722027

RESUMO

The current necessity of the scientific and industrial community, for reduction of aircraft maintenance cost and duration, prioritizes the need for development of innovative nondestructive techniques enabling fast and reliable defect detection on aircraft fuselage and wing skin parts. Herein, a new low-cost thermographic strategy, termed Pulsed Phase-Informed Lock-in Thermography, operating on the synergy of two independent, active infrared thermography techniques, is reported for the fast and quantitative assessment of superficial and subsurface damage in aircraft-grade composite materials. The two-step approach relies on the fast, initial qualitative assessment, by Pulsed Phase Thermography, of defect location and the identification of the optimal material-intrinsic frequency, over which lock-in thermography is subsequently applied for the quantification of the damage's dilatational characteristics. A state-of-the-art ultra-compact infrared thermography module envisioned to form part of a fully-automated autonomous nondestructive testing inspection solution for aircraft was conceived, developed, and tested on aircraft-grade composite specimens with impact damages induced at variable energy levels and on a full-scale aircraft fuselage skin composite panel. The latter task was performed in semi-automated mode with the infrared thermography module mounted on the prototype autonomous vortex robot platform. The timescale requirement for a full assessment of damage(s) within the sensor's field of view is of the order of 60 s which, in combination with the high precision of the methodology, unfolds unprecedented potential towards the reduction in duration and costs of tactical aircraft maintenance, optimization of efficiency and minimization of accidents.

9.
Materials (Basel) ; 11(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783626

RESUMO

This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.

10.
Respir Physiol Neurobiol ; 254: 49-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29719268

RESUMO

Conventionally, the alveolar surface area (SA) has been measured by using post-mortem morphometry. Such studies have highlighted that SA in prematurely-born infants is markedly smaller when compared to term-born infants as a result of postnatal impairment or arrest of alveolar development. We herein explore how, non-invasive measurements of the ventilation/perfusion ratio (VA/Q) can be used to estimate SA in prematurely-born surviving, convalescent infants. We also compare SA in prematurely-born infants measured at term-corrected age, to term-born infants using previously published datasets of VA/Q. Fick's first law of diffusion is employed for the conversion of VA/Q measurements to SA values after correcting for differences in pulmonary perfusion, thickness of the respiratory membrane and alveolar-arterial gradient. We report that SA is fivefold smaller in prematurely-born compared to term-born infants. We conclude that non-invasive measurements of VA/Q can be used for the functional estimation of SA which could, in turn, be used as a future outcome measure in respiratory studies of prematurely-born infants.


Assuntos
Recém-Nascido Prematuro/crescimento & desenvolvimento , Modelos Cardiovasculares , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/patologia , Humanos , Recém-Nascido , Tamanho do Órgão , Alvéolos Pulmonares/anatomia & histologia
11.
ScientificWorldJournal ; 2013: 715945, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935428

RESUMO

Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.


Assuntos
Aviação , Cerâmica , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...