Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 886: 163681, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100159

RESUMO

Biochar, a potential alternative of infield crop residue burning, can prevent nutrient leaching from soil and augment soil fertility. However, pristine biochar contains low cation (CEC) and anion (AEC) exchange capacity. This study developed fourteen engineered biochar by treating a rice straw biochar (RBC-W) first separately with different CEC and AEC enhancing chemicals, and then with their combined treatments to increase CEC and AEC in the novel biochar composites. Following a screening experiment, promising engineered biochar, namely RBC-W treated with O3-HCl-FeCl3 (RBC-O-Cl), H2SO4-HNO3-HCl-FeCl3 (RBC-A-Cl), and NaOH-Fe(NO3)3(RBC-OH-Fe), underwent physicochemical characterization and soil leaching-cum nutrient retention studies. RBC-O-Cl, RBC-A-Cl, and RBC-OH-Fe recorded a spectacular rise in CEC and AEC over RBC-W. All the engineered biochar remarkably reduced the leaching of NH4+-N, NO3- -N, PO43--P and K+ from a sandy loam soil and increased retention of these nutrients. RBC-O-Cl at 4.46 g kg-1 dosage emerged as the most effective soil amendment increasing the retention of above ions by 33.7, 27.8, 15.0, and 5.74 % over a comparable dose of RBC-W. The engineered biochar could thus enhance plants' nutrient use efficiency and reduce the use of costly chemical fertilizers that are harmful to environmental quality.


Assuntos
Oryza , Oryza/química , Carvão Vegetal/química , Solo/química , Ânions , Nutrientes , Cátions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...