Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(12): 103428, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877493

RESUMO

Hepatic miRNA, miR-122, plays an important role in controlling metabolic homeostasis in mammalian liver. Intercellular transfer of miR-122 was found to play a role in controlling tissue inflammation. miR-122, as part of extracellular vesicles released by lipid-exposed hepatic cells, are taken up by tissue macrophages to activate them and produce inflammatory cytokines. Matrix metalloprotease 2 or MMP2 was found to be essential for transfer of extracellular vesicles and their miRNA content from hepatic to non-hepatic cells. MMP2 was found to increase the movement of the extracellular vesicles along the extracellular matrix to enhance their uptake in recipient cells. Inhibition of MMP2 restricts functional transfer of hepatic miRNAs across the hepatic and non-hepatic cell boundaries, and by targeting MMP2, we could reduce the innate immune response in mammalian liver by preventing intra-tissue miR-122 transfer. MMP2 thus could be a useful target to restrict high-fat-diet-induced obesity-related metaflammation.

2.
J Biol Chem ; 290(35): 21536-52, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26203195

RESUMO

Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21(Cip-1/Waf1) expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RB(Ser-780)) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RB(Ser-780) levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21(Cip-1/Waf1) pathway.


Assuntos
Nucléolo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fase G1 , Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Modelos Biológicos , Estabilidade Proteica , Proteólise , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
3.
Biochemistry ; 50(21): 4521-36, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21495629

RESUMO

NGP-1(GNL-2) is a putative GTPase, overexpressed in breast carcinoma and localized in the nucleolus. NGP-1 belongs to the MMR1-HSR1 family of large GTPases that are emerging as crucial coordinators of signaling cascades in different cellular compartments. The members of this family share very closely related G-domains, but the signals and pathways regulating their subcellular localization and their functional relevance remain unknown. To improve our understanding of the nuclear transport mechanism of NGP-1, we have identified two nucleolar localization signals (NoLS) that are independently shown to translocate NGP-1 as well the heterologous protein to the nucleolus. Site-specific mutagenesis and immunofluorescence studies suggest that the tandem repeats of positively charged amino acids are critical for NGP-1 NoLS function. Interestingly, amino-terminal (NGP-1(1-100)) and carboxyl-terminal (NGP-1(661-731)) signals independently interact with receptors importin-ß and importin-α, respectively. This investigation, for the first time, provides evidence that the interaction of importin-α with C-terminal NoLS (NGP-1(661-731)) was able to target the heterologous protein to the nucleolar compartment. Structural modeling analysis and alanine scanning mutagenesis of conserved G-domains suggest that G4 and G5 motifs are critical for GTP binding of NGP-1 and further show that the nucleolar localization of NGP-1 is regulated by a GTP gating-mediated mechanism. In addition, our data suggest that an ongoing transcription is essential for efficient localization of NGP-1 to the nucleolus. We have observed a high level of NGP-1 expression in the mitogen-activated primary human peripheral blood mononuclear cells (hPBMC) as well as in human fetal brain-derived neural precursor cells (hNPCs) in comparison to cells undergoing differentiation. Overall, the results suggest that multiple mechanisms are involved in the localization of NGP-1 to the nucleolus for the regulation of nucleolar function in cell growth and proliferation.


Assuntos
Nucléolo Celular/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Primers do DNA , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
4.
Curr HIV Res ; 7(2): 114-28, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19275580

RESUMO

The human immunodeficiency virus-1 (HIV-1) Vpr protein plays multiple roles in HIV-1 replication. In early infection, Vpr provides help in the nuclear localization of pre-integration complex. Subsequently, Vpr induces cell cycle arrest of infected cells at G2/M phase. Cell cycle arrest facilitates higher rate of viral gene transcription. Vpr is also capable of activating transcription of viral and heterologous genes. Vpr induces apoptosis in infected cells leading to loss of immune cells and onset of clinical AIDS. Interestingly, Vpr is also considered as a passenger protein in the virus particles as it is incorporated into the virus particles through interaction with Gag. The structure of full length Vpr has been resolved recently through NMR. In this review, we have analysed the functions of Vpr using the available data from structural perspective. Packing of the three helices of Vpr around a core formed by hydrophobic side chains and integrity of helical domains are critical for Vpr functions. The distinct functions of Vpr have been attributed to structural integrity of different domains. The unique distribution of acidic and basic residues in Vpr is an interesting feature. Two hydrophobic pockets on the structure of Vpr are proposed to be important targets for modulating Vpr functions. The inter-relationship between different functions of Vpr is discussed in the context of structure. Based on bioinformatics analysis, we propose new targets for modulating Vpr functions, which need to be validated experimentally.


Assuntos
HIV-1/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
5.
Virol J ; 5: 99, 2008 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-18721481

RESUMO

The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication.


Assuntos
Epitopos de Linfócito T/imunologia , Produtos do Gene vpr/química , Genes vpr , Infecções por HIV/imunologia , HIV-1/genética , Polimorfismo Genético , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Produtos do Gene vpr/genética , Produtos do Gene vpr/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...