Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 14(3): e20132, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494714

RESUMO

Cytoplasmic male sterility(CMS), a maternally inherited trait, provides a promising means to harness yield gains associated with hybrid vigor. In pigeonpea [Cajanus cajan (L.) Huth], nine types of sterility-inducing cytoplasm have been reported, of which A2 and A4 have been successfully deployed in hybrid breeding. Unfortunately, molecular mechanism of the CMS trait is poorly understood because of limited research invested. More recently, an association between a mitochondrial gene (nad7) and A4 -CMS has been demonstrated in pigeonpea; however, the mechanism underlying A2 -CMS still remains obscure. The current investigation aimed to analyze the differences in A2 -CMS line (ICPL 88039A) and its isogenic maintainer line (ICPL 88039B) at transcriptome level using next-generation sequencing. Gene expression profiling uncovered a set of 505 genes that showed altered expression in response to CMS, of which, 412 genes were upregulated while 93 were downregulated in the fertile maintainer line vs. the CMS line. Further, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses revealed association of CMS in pigeonpea with four major pathways: glucose and lipid metabolism, ATP production, pollen development and pollen tube growth, and reactive oxygen species (ROS) scavenging. Patterns of digital gene expression were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) of six candidate genes. This study elucidates candidate genes and metabolic pathways having potential associations with pollen development and male sterility in pigeonpea A2 -CMS. New insights on molecular mechanism of CMS trait in pigeonpea will be helpful to accelerate heterosis utilization for enhancing productivity gains in pigeonpea.


Assuntos
Infertilidade Masculina , Infertilidade das Plantas , Citoplasma , Infertilidade Masculina/metabolismo , Melhoramento Vegetal , Infertilidade das Plantas/genética , Transcriptoma
2.
3 Biotech ; 10(10): 434, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32999812

RESUMO

Seed traits present important breeding targets for enhancing grain yield and quality in various grain legume crops including pigeonpea. The present study reports significant genetic variation for six seed traits including seed length (SL), seed width (SW), seed thickness (ST), seed weight (SWT), electrical conductivity (EC) and water uptake (WU) among Cajanus cajan (L.) Millspaugh acc. ICPL 20340 and Cajanus scarabaeoides (L.) Thouars acc. ICP 15739 and an F2 population derived from this interspecific cross. Maximum phenotypic values recorded for the F2 population were higher than observed in the parent ICPL 20340 [F2 max vs ICPL 20340: SW (7.05 vs 5.38), ST (4.63 vs 4.51), EC (65.17 vs 9.72), WU (213.17 vs 109.5)], which suggested contribution of positive alleles from the wild parent, ICP 15739. Concurrently, to identify the QTL controlling these seed traits, we assayed two parents and 94 F2 individuals with 113 polymorphic simple sequence repeat (SSR) markers. In the F2 population, 98 of the 113 SSRs showed Mendelian segregation ratio 1:2:1, whereas significant deviations were observed for 15 SSRs with their χ 2 values ranging between 6.26 and 20.62. A partial genetic linkage map comprising 83 SSR loci was constructed. QTL analysis identified 15 marker-trait associations (MTAs) for seed traits on four linkage groups i.e. LG01, LG02, LG04 and LG05. Phenotypic variations (PVs) explained by these QTL ranged from 4.4 (WU) to 19.91% (EC). These genomic regions contributing significantly towards observed variability of seed traits would serve as potential candidates for future research that aims to improve seed traits in pigeonpea.

3.
Theor Appl Genet ; 127(6): 1263-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24710822

RESUMO

KEY MESSAGE: Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.


Assuntos
Cruzamento/métodos , Produtos Agrícolas/genética , Países em Desenvolvimento , Mapeamento Cromossômico , Produtos Agrícolas/fisiologia , Fabaceae/genética , Fabaceae/fisiologia , Perfilação da Expressão Gênica , Marcadores Genéticos , Genoma de Planta , Genômica , Lens (Planta)/genética , Lens (Planta)/fisiologia , Pisum sativum/genética , Pisum sativum/fisiologia , Locos de Características Quantitativas , Vicia faba/genética , Vicia faba/fisiologia
4.
J Appl Genet ; 45(4): 399-403, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15586436

RESUMO

Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.


Assuntos
Genes de Plantas/imunologia , Marcadores Genéticos , Imunidade Inata , Doenças das Plantas/genética , Seleção Genética , Triticum/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas/genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Sitios de Sequências Rotuladas , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...