Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771165

RESUMO

Processing additives are a special group of chemicals included in rubber formulations to facilitate the flowability of the resultant compounds. Their addition generally affects the cured properties of the subsequent rubber composites, and fine-tuning of the compound formulation is therefore required. In this work, an attempt has been made to address this issue through the preparation of new bio-based processing additives capable of promoting the mixing of the rubber compound while at the same time enhancing mechanical properties following curing. A significant decrease in the mixing energy at the first stage of mixing (~10%) has been observed by substituting only a small percentage of the conventional petroleum-derived process oil with aminated epoxidized soybean oil. Concomitantly, it is found that this aminated epoxidized soybean oil promotes rubber curing and increases the tensile strength of the final composite by ~20% compared to the control.

2.
Langmuir ; 37(34): 10298-10307, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34406773

RESUMO

Soybean oil (SBO) is a renewable material used as an alternative to conventional petroleum-derived oils in the processing of rubber composites. Upon chemical modifications, such as epoxidation, its performance in the processing of rubber can be significantly improved, as indicated by a considerable reduction of the mixing energy. Although it has been hypothesized that hydrogen bonding between functional groups (e.g., epoxy) of SBOs and silanols present on the silica surface plays a key role, there is still a lack of direct evidence supporting this hypothesis. In this work, it is demonstrated that there is an overall correlation between the epoxy concentration of SBOs and the mixing energy, consistent with the long-held hypothesis. In particular, a correlation between the SBO-silica adsorption affinity and the degree of epoxidation is revealed by a set of surface-selective solid-state nuclear magnetic resonance (ssNMR) experiments. In addition, the surface-selective ssNMR technique demonstrated in this work could also be used to evaluate the adsorption affinity of other oils and/or additives more broadly.


Assuntos
Dióxido de Silício , Óleo de Soja , Adsorção , Espectroscopia de Ressonância Magnética , Borracha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...