Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 39(36): 7132-7154, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31350259

RESUMO

Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information.SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.


Assuntos
Retroalimentação Fisiológica , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais Sinápticos , Percepção Visual , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Modelos Neurológicos , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potássio Shab/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Vias Visuais/metabolismo , Vias Visuais/fisiologia
2.
Elife ; 62017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870284

RESUMO

Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors' encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes' optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements.


Assuntos
Drosophila melanogaster/fisiologia , Movimentos Oculares/fisiologia , Estimulação Luminosa , Visão Ocular/fisiologia , Acuidade Visual/fisiologia , Animais , Simulação por Computador , Drosophila melanogaster/ultraestrutura , Fixação Ocular/fisiologia , Modelos Neurológicos , Movimento , Fótons , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Retina/fisiologia
3.
J Vis Exp ; (112)2016 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-27403647

RESUMO

Voltage responses of insect photoreceptors and visual interneurons can be accurately recorded with conventional sharp microelectrodes. The method described here enables the investigator to measure long-lasting (from minutes to hours) high-quality intracellular responses from single Drosophila R1-R6 photoreceptors and Large Monopolar Cells (LMCs) to light stimuli. Because the recording system has low noise, it can be used to study variability among individual cells in the fly eye, and how their outputs reflect the physical properties of the visual environment. We outline all key steps in performing this technique. The basic steps in constructing an appropriate electrophysiology set-up for recording, such as design and selection of the experimental equipment are described. We also explain how to prepare for recording by making appropriate (sharp) recording and (blunt) reference electrodes. Details are given on how to fix an intact fly in a bespoke fly-holder, prepare a small window in its eye and insert a recording electrode through this hole with minimal damage. We explain how to localize the center of a cell's receptive field, dark- or light-adapt the studied cell, and to record its voltage responses to dynamic light stimuli. Finally, we describe the criteria for stable normal recordings, show characteristic high-quality voltage responses of individual cells to different light stimuli, and briefly define how to quantify their signaling performance. Many aspects of the method are technically challenging and require practice and patience to master. But once learned and optimized for the investigator's experimental objectives, it grants outstanding in vivo neurophysiological data.


Assuntos
Células Fotorreceptoras , Animais , Drosophila melanogaster , Interneurônios , Luz , Microeletrodos
4.
Front Neural Circuits ; 10: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047343

RESUMO

Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.


Assuntos
Proteínas de Drosophila/genética , Histamina/deficiência , Mutação/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Cegueira/genética , Cegueira/patologia , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Drosophila , Estimulação Elétrica , Eletrorretinografia , Feminino , Análise de Fourier , Potenciais da Membrana , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...