Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 49(10): 2760-2776, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263384

RESUMO

Instrumented mouthpieces (IM) offer a means of measuring head impacts that occur in sport. Direct measurement of angular head kinematics is preferential for accuracy; however, existing IMs measure angular velocity and differentiate the measurement to calculate angular acceleration, which can limit bandwidth and consume more power. This study presents the development and validation of an IM that uses new, low-power accelerometers for direct measurement of linear and angular acceleration over a broad range of head impact conditions in American football. IM sensor accuracy for measuring six-degree-of-freedom head kinematics was assessed using two helmeted headforms instrumented with a custom-fit IM and reference sensor instrumentation. Head impacts were performed at 10 locations and 6 speeds representative of the on-field conditions associated with injurious and non-injurious impacts in American football. Sensor measurements from the IM were highly correlated with those from the reference instrumentation located at the maxilla and skull center of gravity. Based on pooled data across headform and impact location, R2 ≥ 0.94, mean absolute error (AE) ≤ 7%, and mean relative impact angle ≤ 11° for peak linear and angular acceleration and angular velocity while R2 ≥ 0.90 and mean AE ≤ 7% for kinematic-based injury metrics used in helmet tests.


Assuntos
Futebol Americano , Protetores Bucais , Equipamentos Esportivos , Aceleração , Fenômenos Biomecânicos , Desenho de Equipamento , Cabeça/fisiologia , Humanos , Telemetria/instrumentação , Estados Unidos , Dispositivos Eletrônicos Vestíveis
2.
Ann Biomed Eng ; 48(11): 2599-2612, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33078368

RESUMO

Wearable sensors that accurately record head impacts experienced by athletes during play can enable a wide range of potential applications including equipment improvements, player education, and rule changes. One challenge for wearable systems is their ability to discriminate head impacts from recorded spurious signals. This study describes the development and evaluation of a head impact detection system consisting of a mouthguard sensor and machine learning model for distinguishing head impacts from spurious events in football games. Twenty-one collegiate football athletes participating in 11 games during the 2018 and 2019 seasons wore a custom-fit mouthguard instrumented with linear and angular accelerometers to collect kinematic data. Video was reviewed to classify sensor events, collected from instrumented players that sustained head impacts, as head impacts or spurious events. Data from 2018 games were used to train the ML model to classify head impacts using kinematic data features (127 head impacts; 305 non-head impacts). Performance of the mouthguard sensor and ML model were evaluated using an independent test dataset of 3 games from 2019 (58 head impacts; 74 non-head impacts). Based on the test dataset results, the mouthguard sensor alone detected 81.6% of video-confirmed head impacts while the ML classifier provided 98.3% precision and 100% recall, resulting in an overall head impact detection system that achieved 98.3% precision and 81.6% recall.


Assuntos
Acelerometria , Traumatismos Craniocerebrais , Futebol Americano/lesões , Protetores Bucais , Gravação em Vídeo , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Traumatismos Craniocerebrais/patologia , Traumatismos Craniocerebrais/fisiopatologia , Traumatismos Craniocerebrais/prevenção & controle , Cabeça/patologia , Cabeça/fisiopatologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...