Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 975: 176643, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754539

RESUMO

Chronic diabetes mellitus is reported to be associated with acute kidney injury. The enzyme histone deacetylase-2 (HDAC-2) was found to be upregulated in diabetes-related kidney damage. Alpha-cyperone (α-CYP) is one of the active ingredients of Cyperus rotundus that possesses antioxidant and anti-inflammatory effects. We evaluated the effect of α-CYP on improving oxidative stress and tissue inflammation following renal ischemia/reperfusion (I/R) injury in diabetic rats. The effect of α-CYP on HDAC-2 expression in renal homogenates and in the NRK-52 E cell line was evaluated following renal I/R injury and high glucose conditions, respectively. Molecular docking was used to investigate the binding of α-CYP with the HDAC-2 active site. Both renal function and oxidative stress were shown to be impaired in diabetic rats due to renal I/R injury. Significant improvements in kidney/body weight ratio, creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and uric acid were observed in diabetic rats treated with α-CYP (50 mg/kg) two weeks prior to renal I/R injury. α-CYP treatment also improved histological alterations in renal tissue and lowered levels of malondialdehyde, myeloperoxidase, and hydroxyproline. Treatment with α-CYP suppressed the increased HDAC-2 expression in the renal tissue of diabetic rats and in the NRK-52 E cell line. The molecular docking reveals that α-CYP binds to HDAC-2 with good affinity, ascertained by molecular dynamics simulations and binding free energy analysis. Overall, our data suggest that α-CYP can effectively prevent renal injury in diabetic rats by regulating oxidative stress, tissue inflammation, fibrosis and inhibiting HDAC-2 activity.


Assuntos
Diabetes Mellitus Experimental , Histona Desacetilase 2 , Rim , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Traumatismo por Reperfusão , Animais , Histona Desacetilase 2/metabolismo , Masculino , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...