Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vasc Interv Radiol ; 34(9): 1556-1564.e4, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201655

RESUMO

PURPOSE: To evaluate the yttrium-90 (90Y) activity distribution in biopsy tissue samples of the treated liver to quantify the dose with higher spatial resolution than positron emission tomography (PET) for accurate investigation of correlations with microscopic biological effects and to evaluate the radiation safety of this procedure. MATERIALS AND METHODS: Eighty-six core biopsy specimens were obtained from 18 colorectal liver metastases (CLMs) immediately after 90Y transarterial radioembolization (TARE) with either resin or glass microspheres using real-time 90Y PET/CT guidance in 17 patients. A high-resolution micro-computed tomography (micro-CT) scanner was used to image the microspheres in part of the specimens and allow quantification of 90Y activity directly or by calibrating autoradiography (ARG) images. The mean doses to the specimens were derived from the measured specimens' activity concentrations and from the PET/CT scan at the location of the biopsy needle tip for all cases. Staff exposures were monitored. RESULTS: The mean measured 90Y activity concentration in the CLM specimens at time of infusion was 2.4 ± 4.0 MBq/mL. The biopsies revealed higher activity heterogeneity than PET. Radiation exposure to the interventional radiologists during post-TARE biopsy procedures was minimal. CONCLUSIONS: Counting the microspheres and measuring the activity in biopsy specimens obtained after TARE are safe and feasible and can be used to determine the administered activity and its distribution in the treated and biopsied liver tissue with high spatial resolution. Complementing 90Y PET/CT imaging with this approach promises to yield more accurate direct correlation of histopathological changes and absorbed dose in the examined specimens.


Assuntos
Neoplasias Colorretais , Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microtomografia por Raio-X , Autorradiografia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/tratamento farmacológico , Radioisótopos de Ítrio/efeitos adversos , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Biópsia Guiada por Imagem , Microesferas
3.
Med Phys ; 44(10): e391-e429, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688159

RESUMO

The introduction of advanced techniques and technology in radiotherapy has greatly improved our ability to deliver highly conformal tumor doses while minimizing the dose to adjacent organs at risk. Despite these tremendous improvements, there remains a general concern about doses to normal tissues that are not the target of the radiation treatment; any "nontarget" radiation should be minimized as it offers no therapeutic benefit. As patients live longer after treatment, there is increased opportunity for late effects including second cancers and cardiac toxicity to manifest. Complicating the management of these issues, there are unique challenges with measuring, calculating, reducing, and reporting nontarget doses that many medical physicists may have limited experience with. Treatment planning systems become dramatically inaccurate outside the treatment field, necessitating a measurement or some other means of assessing the dose. However, measurements are challenging because outside the treatment field, the radiation energy spectrum, dose rate, and general shape of the dose distribution (particularly the percent depth dose) are very different and often require special consideration. Neutron dosimetry is also particularly challenging, and common errors in methodology can easily manifest as errors of several orders of magnitude. Task Group 158 was, therefore, formed to provide guidance for physicists in terms of assessing and managing nontarget doses. In particular, the report: (a) highlights major concerns with nontarget radiation; (b) provides a rough estimate of doses associated with different treatment approaches in clinical practice; (c) discusses the uses of dosimeters for measuring photon, electron, and neutron doses; (d) discusses the use of calculation techniques for dosimetric evaluations; (e) highlights techniques that may be considered for reducing nontarget doses; (f) discusses dose reporting; and (g) makes recommendations for both clinical and research practice.


Assuntos
Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/efeitos adversos
4.
Health Phys ; 108(2): 206-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25551504

RESUMO

The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans [the Million Worker Study (MWS)] is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time and not within seconds, as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiologic study is cancer mortality, but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MWS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups, there is a meaningful component of radionuclide intakes that requires internal radiation dosimetry assessments. Scientific Committee 6-9 has been established by the National Council on Radiation Protection and Measurements (NCRP) to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the MWS. The NCRP dosimetry report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Report Nos. 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the MWS to ensure that certain dosimetry criteria are considered: calculation of annual absorbed doses in the organs of interest, separation of low and high linear-energy transfer components, evaluation of uncertainties, and quality assurance and quality control. It is recognized that the MWS and its approaches to dosimetry are a work in progress and that there will be flexibility and changes in direction as new information is obtained with regard to both dosimetry and the epidemiologic features of the study components. This paper focuses on the description of the various components of the MWS, the available dosimetry results, and the challenges that have been encountered. It is expected that the Committee will complete its report in 2016.


Assuntos
Exposição Ocupacional/análise , Proteção Radiológica/métodos , Medição de Risco/métodos , Astronautas , Exposição Ambiental/análise , Dosimetria Fotográfica , Guias como Assunto , Pessoal de Saúde , Humanos , Indústrias , Neoplasias Induzidas por Radiação/etiologia , Centrais Nucleares , Armas Nucleares , Doses de Radiação , Radiografia , Radioisótopos/análise , Radiometria , Estados Unidos , Veteranos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...