Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(53): 34381-34392, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545588

RESUMO

Perovskite solar cells promise to deliver high efficiencies at low manufacturing costs. Yet on their way towards commercialization, they have to face the associated risk of potential lead leakage into the environment after damage to the cell's encapsulation. Here we present a new approach to generate a lead binding coating, based on a layer-by-layer deposition of biopolymers. A lead-adsorbing functionality was shown after subsequent crosslinking, demonstrating a high binding capacity. The lead binding capabilities could be further enhanced by increasing the thickness of the coatings, analyzed both in the supernatant and on the surface of the coated material. The thin-layered coating had a thickness of less than one micrometer, was stable even under low pH conditions and could successfully be transferred onto different substrates, ranging from silicon, gold and glass substrates to polymeric nonwoven materials with high surface areas, further increasing its lead binding capacity. This newly described coating was applied within perovskite solar cell stacks without impeding the overall efficiency but strongly reducing the amount of lead released after simulated rain tests on devices with damaged encapsulation. Accordingly, incorporation of lead-binding polyelectrolyte multilayers inside the encapsulation of perovskite solar cells shows great potential to limit the perovskite solar cells inherent risk of lead leakage in a sustainable manner.

2.
J Mater Chem B ; 9(6): 1647-1660, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33481972

RESUMO

Fibronectin coating increases implant biocompatibility by enhancing surface endothelialization via integrin-mediated binding. Surface properties determine the fibronectin orientation and conformation, dictating which ligands are presented, and therefore altering the bioactivity of an implant surface. In this study, polyurethane was treated with oxygen plasma, which allowed for a simultaneous modification of the surface chemistry and topography to modulate fibronectin adsorption. By varying the parameters of the treatment, human plasma fibronectin adsorbed on the surfaces in different conformations, orientations, and binding affinities, which was investigated by atomic force microscopy, fluorescence microscopy, monoclonal and polyclonal antibody staining and reflectometric interference spectroscopy. Apart from the most hydrophilic rough surfaces, the adsorbed fibronectin showed a lower binding affinity and less conformational change on the more hydrophilic surfaces. A large amount of exposed fibronectin-cell binding was detected on the rough treated and the smooth untreated surfaces. Primary isolated human umbilical vein and human microvascular endothelial cells showed a significantly higher cell adherence on the absorbed fibronectin with a low binding affinity and low conformational changes. Significant differences in the formation of mature focal adhesions and the reorganization of F-actin were identified on the rough treated and the smooth untreated surfaces. Our data suggest that oxygen plasma treatment is a reliable technique for the modulation of fibronectin adsorption in order to adjust fibronectin bioactivity and impact cell responses to implant surfaces.


Assuntos
Materiais Revestidos Biocompatíveis/química , Células Endoteliais/química , Fibronectinas/química , Oxigênio/química , Gases em Plasma/química , Poliuretanos/química , Adsorção , Adesão Celular , Células Cultivadas , Humanos , Tamanho da Partícula , Propriedades de Superfície
3.
Cells ; 9(3)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210018

RESUMO

Appropriate mechanical properties and fast endothelialization of synthetic grafts are key to ensure long-term functionality of implants. We used a newly developed biostable polyurethane elastomer (TPCU) to engineer electrospun vascular scaffolds with promising mechanical properties (E-modulus: 4.8 ± 0.6 MPa, burst pressure: 3326 ± 78 mmHg), which were biofunctionalized with fibronectin (FN) and decorin (DCN). Neither uncoated nor biofunctionalized TPCU scaffolds induced major adverse immune responses except for minor signs of polymorph nuclear cell activation. The in vivo endothelial progenitor cell homing potential of the biofunctionalized scaffolds was simulated in vitro by attracting endothelial colony-forming cells (ECFCs). Although DCN coating did attract ECFCs in combination with FN (FN + DCN), DCN-coated TPCU scaffolds showed a cell-repellent effect in the absence of FN. In a tissue-engineering approach, the electrospun and biofunctionalized tubular grafts were cultured with primary-isolated vascular endothelial cells in a custom-made bioreactor under dynamic conditions with the aim to engineer an advanced therapy medicinal product. Both FN and FN + DCN functionalization supported the formation of a confluent and functional endothelial layer.


Assuntos
Prótese Vascular , Células Progenitoras Endoteliais/metabolismo , Fibronectinas/metabolismo , Engenharia Tecidual , Adsorção , Reatores Biológicos , Células Cultivadas , Decorina/metabolismo , Células Progenitoras Endoteliais/ultraestrutura , Humanos , Imunidade , Masculino , Alicerces Teciduais/química
4.
ACS Appl Mater Interfaces ; 11(46): 42885-42895, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31657892

RESUMO

Noninvasive epithelial tissue treatment with cold atmospheric plasma (CAP) is a promising option for local treatment of chronic inflammatory and precancerous lesions as well as various mucosal cancer diseases. Atmospheric pressure plasma jets (APPJ) are well-characterized and medically approved plasma sources. There are numbers of medically approved plasma sources for the treatment of epithelial diseases; however, little is known about the biochemical effects of CAP at the plasma-tissue interface. Furthermore, the actual penetration depth of CAP into tissue is currently unclear. Noninvasive and marker-independent Raman microspectroscopy was employed to assess the molecular effects of CAP on single cells and primary human cervical tissue samples. CAP treatment showed immediate and persisting changes of specific molecular tissue components determined by multivariate analysis. Raman imaging identified CAP-dependent changes in the morphology of the tissue, as well as molecular tissue components. The expression of the different components was not significantly altered within 24 h of incubation. DNA and lipids showed the strongest changes upon CAP treatment, which were traced to the basal cell layer of cervical epithelium, corresponding to an average functional plasma penetration depth of roughly 270 µm. In this study, Raman microspectroscopy is shown to be a promising method for molecular single-cell and solid tissue characterization. Regarding CAP treatment of tissues, Raman microspectroscopy could be suitable for the screening of biological mechanisms as well as for future contact- and marker-independent monitoring of plasma tissue effects.


Assuntos
Biomarcadores Tumorais/metabolismo , Colo do Útero , Proteínas de Neoplasias/metabolismo , Gases em Plasma/farmacologia , Lesões Pré-Cancerosas , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Colo do Útero/metabolismo , Colo do Útero/patologia , Feminino , Humanos , Mucosa/metabolismo , Mucosa/patologia , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
5.
Sci Rep ; 9(1): 7014, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065074

RESUMO

DNA methylation plays a critical role in the regulation of gene expression. Global DNA methylation changes occur in carcinogenesis as well as early embryonic development. However, the current methods for studying global DNA methylation levels are invasive and require sample preparation. The present study was designed to investigate the potential of Raman microspectroscopy and Raman imaging as non-invasive, marker-independent and non-destructive tools for the detection of DNA methylation in living cells. To investigate global DNA methylation changes, human colon carcinoma HCT116 cells, which were hypomorphic for DNA methyltransferase 1, therefore showing a lower global DNA methylation (DNMT1-/- cells), were compared to HCT116 wildtype cells. As a model system for early embryogenesis, murine embryonic stem cells were adapted to serum-free 2i medium, leading to a significant decrease in DNA methylation. Subsequently, 2i medium -adapted cells were compared to cells cultured in serum-containing medium. Raman microspectroscopy and imaging revealed significant differences between high- and low-methylated cell types. Higher methylated cells demonstrated higher relative intensities of Raman peaks, which can be assigned to the nucleobases and 5-methylcytosine. Principal component analysis detected distinguishable populations of high- and low-methylated samples. Based on the provided data we conclude that Raman microspectroscopy and imaging are suitable tools for the real-time, marker-independent and artefact-free investigation of the DNA methylation states in living cells.


Assuntos
5-Metilcitosina/química , Neoplasias Colorretais/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Células-Tronco Embrionárias/química , Animais , Técnicas de Cultura de Células , Neoplasias Colorretais/ultraestrutura , Meios de Cultura , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/ultraestrutura , Epigênese Genética , Células HCT116 , Humanos , Camundongos , Análise de Componente Principal , Análise Espectral Raman
6.
Matrix Biol ; 68-69: 180-193, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605717

RESUMO

The extracellular matrix (ECM) is extensively remodeled in tumor tissues. Overproduction of collagens, pathological collagen crosslinking and alignment of fibers are major processes that ultimately result in an increased tissue stiffness. Although it is known that glycosaminoglycans (GAGs) play an important role in tumor signaling, their contribution to the biomechanical properties of tumor ECM is unknown. In this study, ECM structures of human colon carcinoma and normal (control) colon tissues were histologically identified. Using atomic force microscopy (AFM) nanoindentation, we show that the collagen-rich regions within the ECM of colon carcinoma tissues were significantly stiffer than the submucosal collagen-rich layer of control tissues. Screening of these regions with Raman microspectroscopy revealed significantly different molecular fingerprints for collagen fibers in colon carcinoma tissues compared to control tissues. We further showed an increased alignment of collagen fibers and elevated levels of GAG immuno-reactivity within the collagen network of colon carcinoma tissues. GAGs such as heparan sulfate and chondroitin sulfate were detected in significantly elevated levels in collagen fibers of carcinoma tissues. Moreover, immunodetection of the collagen-associated proteoglycan decorin was significantly decreased in carcinomas tissues of individual patients when compared with the corresponding control tissues. Overall a strong patient-to-patient variability was evident in the ECM composition, structure and biomechanics of individual colon carcinoma tissues. Although, biomechanical characteristics of tumor ECM were not directly impacted by GAG content, GAGs might play an important role during the mechanical and structural remodeling of pathological tumor ECM. To manipulate GAG expression and deposition in tumor microenvironments could represent a novel potential therapeutic strategy.


Assuntos
Neoplasias do Colo/metabolismo , Matriz Extracelular/ultraestrutura , Glicosaminoglicanos/metabolismo , Idoso , Fenômenos Biomecânicos , Neoplasias do Colo/patologia , Decorina/metabolismo , Regulação para Baixo , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...