Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 515(7527): 379-83, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409828

RESUMO

Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.

2.
Philos Trans A Math Phys Eng Sci ; 372(2009): 20120438, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24421372

RESUMO

Recently, strain engineering has been shown to be a powerful and flexible means of tailoring the properties of ABO3 perovskite thin films. The effect of epitaxial strain on the structure of the perovskite unit cell can induce a host of interesting effects, these arising from either polar cation shifts or rotation of the oxygen octahedra, or both. In the multi-ferroic perovskite bismuth ferrite (BiFeO3-BFO), both degrees of freedom exist, and thus a complex behaviour may be expected as one plays with epitaxial strain. In this paper, we review our results on the role of strain on the ferroic transition temperatures and ferroic order parameters. We find that, while the Néel temperature is almost unchanged by strain, the ferroelectric Curie temperature strongly decreases as strain increases in both the tensile and compressive ranges. Also unexpected is the very weak influence of strain on the ferroelectric polarization value. Using effective Hamiltonian calculations, we show that these peculiar behaviours arise from the competition between antiferrodistortive and polar instabilities. Finally, we present results on the magnetic order: while the cycloidal spin modulation present in the bulk survives in weakly strained films, it is destroyed at large strain and replaced by pseudo-collinear antiferromagnetic ordering. We discuss the origin of this effect and give perspectives for devices based on strain-engineered BiFeO3.

3.
J Phys Condens Matter ; 24(16): 162202, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22467186

RESUMO

Epitaxial strain has recently emerged as a powerful means to engineer the properties of ferroelectric thin films, for instance to enhance the ferroelectric Curie temperature (T(C)) in BaTiO(3). However, in multiferroic BiFeO(3) thin films an unanticipated strain-driven decrease of T(C) was reported and ascribed to the peculiar competition between polar and antiferrodistortive instabilities. Here, we report a systematic characterization of the room-temperature ferroelectric and piezoelectric properties for strain levels ranging between -2.5% and +1%. We find that polarization and the piezoelectric coefficient increase by about 20% and 250%, respectively, in this strain range. These trends are well reproduced by first-principles-based techniques.

4.
J Phys Condens Matter ; 21(18): 182001, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21825442

RESUMO

TbMnO(3) films have been grown under compressive strain on (001)-oriented SrTiO(3) crystals. They have an orthorhombic structure and display the (001) orientation. With increasing thickness, the structure evolves from a more symmetric (tetragonal) to a less symmetric (bulk-like orthorhombic) structure, while keeping constant the in-plane compression, thereby leaving the out-of-plane lattice spacing unchanged. The domain microstructure of the films is also revealed, showing an increasing number of orthorhombic domains as the thickness is decreased: we directly observe ferroelastic domains as narrow as 4 nm. The high density of domain walls may explain the induced ferromagnetism observed in the films, while both the decreased anisotropy and the small size of the domains could account for the absence of a ferroelectric spin spiral phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...