Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Vet Scand ; 57: 62, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416518

RESUMO

BACKGROUND: Free amino acids and acylcarnitines circulating in the blood can be used for diagnosis for metabolic illness and imbalances. To date, the normal reference ranges of amino acids and acylcarnitines in horse peripheral blood have not been established. In this study, the concentrations of 12 amino acids and 26 acylcarnitines were determined by tandem mass spectrometry in complete blood from 100 healthy horses (50 Quarter horses (QH) [23 males and 27 females] and 50 American Miniature horses (AMH) [15 males and 35 females]) with no signs of metabolic disease. The means and standard deviations were determined and data statistically analyzed. FINDINGS: Concentrations of short, medium, and long chain acylcarnitines were significantly higher in male AMH than in male QH. The concentrations of the amino acids alanine, arginine, glycine, proline (glycogenic), and leucine (ketogenic) were higher in the QH than in the AMH. Female AMH had higher concentrations of propionylcarnitine, leucine, proline, arginine, and ornithine than female QH. CONCLUSIONS: Normal reference ranges of amino acids and acylcarnitines were established for AMH and QH. Significant differences were found in concentration of these compounds between breeds and gender.


Assuntos
Aminoácidos/sangue , Carnitina/análogos & derivados , Cavalos/sangue , Cavalos/metabolismo , Animais , Carnitina/sangue , Feminino , Cavalos/genética , Masculino , México , Valores de Referência , Espectrometria de Massas em Tandem/veterinária
2.
Oncol Lett ; 3(4): 751-755, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22740987

RESUMO

The Wilm's tumor gene (WT1), encoding a transcription factor that modulates the expression of certain genes that are involved in proliferation and apoptosis, is overexpressed in numerous solid tumors. WT1 is important for cell proliferation and in the diagnosis of melanoma. The objectives of this study were to investigate whether WT1 silencing is capable of synergizing with chemotherapeutic agents and whether this silencing is capable of sensitizing cancer cells to doxorubicin and cisplatin in the B16F10 murine melanoma cell line. In the present study, B16F10 cells were simultaneously treated with median lethal doses (LD50s) of WT1-1 or WT1-2 small hairpin RNAs (shRNAs) and chemotherapeutic agents. A total of 24 h post-transfection, a [3-(4,5-dimethylthiazol-2yl)-2,5- diphenyl tetrazolium bromide assay] MTT assay was performed. To determine whether shRNA interference (shRNAi) is capable of sensitizing B16F10 cells to chemotherapeutic agents, cells were transfected with an LD50 of each of the recombinant plasmids, treated with varying concentrations of doxorubicin or cisplatin 24 h post-transfection, and analyzed 48 h later for inhibition of cell proliferation using the MTT assay. We observed that WT1-RNAi and the two chemotherapeutic agents acted synergistically to inhibit B16F10 cell proliferation. The greatest inhibition of cell proliferation was observed with the WT1-2/cisplatin (91%) and WT1-1/cisplatin combinations (85%). WT1 silencing using shRNAi induced the chemosensitization of cells to doxorubicin and cisplatin, with the greatest inhibition (85%) of cell proliferation being observed in the cells treated with the WT1-2/cisplatin 6 ng/µl combination. Our results provide direct evidence that WT1 gene silencing has a synergistic effect with chemotherapeutic drugs and sensitizes B16F10 melanoma cells to doxorubicin and cisplatin. This suggests that these combination strategies are potentially utilized in melanoma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...