Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 172: 67-91, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806376

RESUMO

The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.


Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Neoplasias/patologia , Linfócitos T , Terapia Combinada , Microambiente Tumoral
2.
Adv Drug Deliv Rev ; 181: 114033, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808227

RESUMO

Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.


Assuntos
Neoplasias Encefálicas/cirurgia , COVID-19/cirurgia , Neurocirurgia/métodos , Animais , Barreira Hematoencefálica/cirurgia , Glioblastoma/cirurgia , Humanos , Nanotecnologia/métodos , Pandemias/estatística & dados numéricos , Microambiente Tumoral/fisiologia
3.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835657

RESUMO

Glioblastoma (GBM) is the most prevalent primary brain cancer in the pediatric and adult population. It is known as an untreatable tumor in urgent need of new therapeutic approaches. The objective of this work was to develop multifunctional nanomedicines to treat GBM in clinical practice using combination therapy for several targets. We developed multifunctional nanopolymers (MNPs) based on a naturally derived biopolymer, poly(ß-L-malic) acid, which are suitable for central nervous system (CNS) treatment. These MNPs contain several anticancer functional moieties with the capacity of crossing the blood-brain barrier (BBB), targeting GBM cells and suppressing two important molecular markers, tyrosine kinase transmembrane receptors EGFR/EGFRvIII and c-Myc nuclear transcription factor. The reproducible syntheses of MNPs where monoclonal antibodies are replaced with AP-2 peptide for effective BBB delivery were presented. The active anticancer inhibitors of mRNA/protein syntheses were Morpholino antisense oligonucleotides (AONs). Two ways of covalent AON-polymer attachments with and without disulfide bonds were explored. These MNPs bearing AONs to EGFR/EGFRvIII and c-Myc, as well as in a combination with the polymer-attached checkpoint inhibitor anti-PD-1 antibody, orchestrated a multi-pronged attack on intracranial mouse GBM to successfully block tumor growth and significantly increase survival of brain tumor-bearing animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...