Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34979894

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a chronic autoimmune disease affecting people globally. Usually developed during childhood, T1D is characterized by the destruction of pancreatic ß-cells due to immune cell attack and the establishment of an inflammatory process. OBJECTIVE: The study aimed to investigate the effects of vitamin D through its nuclear receptor and the ω-3 polyunsaturated fatty acids (PUFAs) through their lipid derivatives in T1D modulation. Both components exert anti-inflammatory activity and act directly on cells of the immune system, attenuating the destruction of insulin-producing cells. Furthermore, they lead to a better glycemic level, reducing the need for insulin and a normal immune state, such as C-peptide maintenance. METHODS: Presently, our review highlights the significant studies that evaluated the supplementation of vitamin D and ω-3 PUFAs in humans and animal models in the modulation of T1D. CONCLUSION: The data collected suggests that supplementation can provide potential benefits, mainly when done early in the diagnosis, since it reduces the need for insulin and the risk of complications generated by the disease.


Assuntos
Diabetes Mellitus Tipo 1 , Ácidos Graxos Ômega-3 , Animais , Suplementos Nutricionais , Humanos , Insulina , Vitamina D , Vitaminas
2.
Cell Death Dis ; 12(2): 158, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547278

RESUMO

Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1ß (IL-1ß) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1ß expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.


Assuntos
Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Ácido Úrico/farmacologia , Animais , Ácidos Graxos/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Macaca mulatta , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Inibidora de Apoptose Neuronal/genética , Ligação Proteica , Células THP-1 , Ácido Úrico/metabolismo
3.
Clin Sci (Lond) ; 135(1): 19-34, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399849

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic ß-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1ß protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1ß secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Animais , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Gravidez , Transdução de Sinais , Estreptozocina
4.
Clin Sci, v. 135, n. 1, p. 19-34, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3435

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic β-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1β protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1β secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.

5.
Inflammation ; 42(2): 449-462, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707388

RESUMO

Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Pâncreas/metabolismo , Fosfato de Sitagliptina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Citocinas/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Insulina/metabolismo , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/citologia , Fosfato de Sitagliptina/uso terapêutico , Estreptozocina , Subpopulações de Linfócitos T , Resultado do Tratamento
6.
Sci Rep ; 7(1): 3937, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638152

RESUMO

Obesogenic diets increase body weight and cause insulin resistance (IR), however, the association of these changes with the main macronutrient in the diet remains to be elucidated. Male C57BL/6 mice were fed with: control (CD), CD and sweetened condensed milk (HS), high-fat (HF), and HF and condensed milk (HSHF). After 2 months, increased body weight, glucose intolerance, adipocyte size and cholesterol levels were observed. As compared with CD, HS ingested the same amount of calories whereas HF and HSHF ingested less. HS had increased plasma AST activity and liver type I collagen. HF caused mild liver steatosis and hepatocellular damage. HF and HSHF increased LDL-cholesterol, hepatocyte and adipocyte hypertrophy, TNF-α by macrophages and decreased lipogenesis and adiponectin in adipose tissue (AT). HSHF exacerbated these effects, increasing IR, lipolysis, mRNA expression of F4/80 and leptin in AT, Tlr-4 in soleus muscle and IL-6, IL-1ß, VCAM-1, and ICAM-1 protein in AT. The three obesogenic diets induced obesity and metabolic dysfunction. HS was more proinflammatory than the HF and induced hepatic fibrosis. The HF was more detrimental in terms of insulin sensitivity, and it caused liver steatosis. The combination HSHF exacerbated the effects of each separately on insulin resistance and AT inflammatory state.


Assuntos
Dieta Hiperlipídica , Inflamação/etiologia , Resistência à Insulina , Leite , Obesidade/etiologia , Adipócitos/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Edulcorantes/administração & dosagem
7.
Sci Rep ; 7: 39884, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084303

RESUMO

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1ß. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1ß release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.


Assuntos
Inflamassomos/metabolismo , Nefropatias/metabolismo , Rim/patologia , Macrófagos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
8.
Immunobiology ; 218(3): 338-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22704522

RESUMO

A balance between proinflammatory (Th17 and Tc17) and anti-inflammatory (regulatory T cells) subsets of T cells is essential to maintain immunological tolerance and prevent the onset of several autoimmune diseases, including type 1 diabetes. However, the kinetics of these subsets and disease severity during the streptozotocin (STZ)-induced diabetes course has not been determined. Thus, susceptible C57BL/6 mice were administrated with multiple low doses of STZ and we evaluated the frequency/absolute number of these T cell subsets in the pancreatic lymph nodes (PLNs) and spleen and Th1, Th17, Treg cytokine production in the pancreatic tissue. At different time points of the disease progression (6, 11, 18 and 25 days after the last STZ administration), the histopathological alterations were also evaluated by H&E and immunohistochemistry staining. During the initial phase of diabetes development (day 6), we noted increased numbers of CD4(+) and CD8(+) T cells in spleen and PLNs. At the same time, the frequencies of Th17 and Tc17 cells in PLNs were also enhanced. In addition, the early augment of interferon gamma (IFN-γ), tumoral necrosis factor (TNF-α), IL-6 and IL-17 levels in pancreatic tissue correlated with pancreatic islet inflammation and mild ß-cell damage. Notably, the absolute number of Treg cells increased in PLNs during over time when compared to control group. Interestingly, increased IL-10 levels were associated with control of the inflammatory process during the late phase of the type 1 diabetes (day 25). In agreement, mice lacking the expression of IL-17 receptor (Il17r) showed impairment in STZ-induced diabetes progression, reduced peri-insulitis and beta cells preservation when compared with wild-type mice. Our findings suggest that dynamic changes of pathogenic Th17/Tc17 and regulatory T cell subsets numbers is associated with early strong inflammation in the pancreatic islets followed by late regulatory profile during the experimental STZ-induced diabetes course.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Pâncreas/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Apoptose , Comunicação Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Humanos , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...