Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 40(4): e3804, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286150

RESUMO

Computational fluid dynamics (CFD) studies of left atrial flows have reached a sophisticated level, for example, revealing plausible relationships between hemodynamics and stresses with atrial fibrillation. However, little focus has been on fundamental fluid modeling of LA flows. The purpose of this study was to investigate the spatiotemporal convergence, along with the differences between high- (HR) versus normal-resolution/accuracy (NR) solution strategies, respectively. Rigid wall CFD simulations were conducted on 12 patient-specific left atrial geometries obtained from computed tomography scans, utilizing a second-order accurate and space/time-centered solver. The convergence studies showed an average variability of around 30% and 55% for time averaged wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and endothelial cell activation potential (ECAP), even between intermediate spatial and temporal resolutions, in the left atrium (LA) and left atrial appendage (LAA), respectively. The comparison between HR and NR simulations showed good correlation in the LA for WSS, RRT, and ECAP ( R 2 > .9 ), but not for OSI ( R 2 = .63 ). However, there were poor correlations in the LAA especially for OSI, RRT, and ECAP ( R 2 = .55, .63, and .61, respectively), except for WSS ( R 2 = .81 ). The errors are comparable to differences previously reported with disease correlations. To robustly predict atrial hemodynamics and stresses, numerical resolutions of 10 M elements (i.e., Δ x = ∼ .5 mm) and 10 k time-steps per cycle seem necessary (i.e., one order of magnitude higher than normally used in both space and time). In conclusion, attention to fundamental numerical aspects is essential toward establishing a plausible, robust, and reliable model of LA flows.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Humanos , Hidrodinâmica , Átrios do Coração/diagnóstico por imagem , Hemodinâmica
2.
PLoS One ; 15(12): e0244442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33373419

RESUMO

Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60-260 µm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 µm/s), though reaching up to 7 µm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20-30 µm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.


Assuntos
Líquido Cefalorraquidiano/fisiologia , Sistema Glinfático/fisiologia , Modelos Cardiovasculares , Animais , Simulação por Computador , Humanos , Camundongos , Fluxo Pulsátil/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...