Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
medRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405918

RESUMO

Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few. This paper describes a novel kernel for CSF estimation that is more flexible than a kernel based on strictly functional forms. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.

2.
J Vis ; 24(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38197739

RESUMO

Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast sensitivity functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This article describes the development of the machine learning contrast response function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the machine learning contrast sensitivity function (MLCSF) was evaluated to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential.


Assuntos
Sensibilidades de Contraste , Tetranitrato de Pentaeritritol , Humanos , Teorema de Bayes , Olho , Aprendizado de Máquina
3.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37292738

RESUMO

Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast Sensitivity Functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This paper describes the development of the Machine Learning Contrast Response Function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the MLCSF was evaluated in order to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential. Precis: Machine learning classifiers enable accurate and efficient contrast sensitivity function estimation with item-level prediction for individual eyes.

4.
Nutrients ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235656

RESUMO

Digital eye strain is a complex, multifactorial condition that can be caused by excessive screen time exposure to various electronic devices such as smartphones, tablets, e-readers, and computers. Current literature suggests oxidative damage concomitant with a chronic pro-inflammatory state represent significant etiopathogenic mechanisms. The present review aims to discuss the potential dietary role for micronutrients with nutraceutical properties to ameliorate various ocular and vision-related symptoms associated with digital eye strain. For ocular surface dysfunction, enhanced anti-inflammatory benefits with omega-3 polyunsaturated fatty acids have been well documented for treatment of dry eye disease. The anti-oxidative and immunosuppressive properties of anthocyanin phytochemicals may also confer protective effects against visually induced cognitive stress and digital asthenopia. Meanwhile, nutraceutical strategies involving xanthophyll macular carotenoids demonstrate enhanced cognitive functioning and overall visual performance that aids digital eye strain. Collectively, preliminary findings seem to offer a strong line of evidence to substantiate the need for additional randomized controlled trials aimed at treating digital eye strain with adjunctive nutraceutical strategies. Further RCT and comparisons on commercially available nutritional supplements are needed to quantify the clinical benefits.


Assuntos
Astenopia , Síndromes do Olho Seco , Ácidos Graxos Ômega-3 , Antocianinas/uso terapêutico , Astenopia/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Micronutrientes/uso terapêutico , Xantofilas/uso terapêutico
6.
Nutrients ; 13(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34579067

RESUMO

Twilight and low luminance levels are visually challenging environments for the elderly, especially when driving at night. Carotenoid rich diets are known to increase macular pigment optical density (MPOD), which in turn leads to an improvement in visual function. It is not known whether augmenting MPOD can lead to a decrease in vision related night driving difficulties. Additionally, it is unknown if carotenoid supplementation provides additional measurable benefits to one's useful field of view (UFOV) along with a decreased composite crash risk score. The aim of the study was to evaluate changes in night vision function and UFOV in individuals that took carotenoid vitamin supplements for a six-month period compared to a placebo group. METHODS: A prospective, randomized, double-blind, six-month trial of a 14 mg zeaxanthin/7 mg lutein-based supplement was carried out. Participants were randomized into active or placebo group (approx 2:1). RESULTS: n = 33 participants (26 males/7 females) participated with 93% capsule intake compliance in the supplemented group (n = 24) and placebo group (n = 9). MPOD (mean/standard error SE) in the active group increased in the Right eye from 0.35 density units (du)/0.04 SE to 0.41 du/0.05 SE; p < 0.001 and in the Left eye from 0.35 du/0.05 SE to 0.37 du, p > 0.05). The supplemented group showed significant improvements in contrast sensitivity with glare in both eyes with improvements in LogMAR scores of 0.147 and 0.149, respectively (p = 0.02 and 0.01, respectively), monocularly tested glare recovery time improved 2.76 and 2.54 s, respectively, (p = 0.008 and p = 0.02), and we also noted a decreased preferred luminance required to complete visual tasks (p = 0.02 and 0.03). Improvements in UFOV scores of divided attention (p < 0.001) and improved composite crash risk score (p = 0.004) were seen in the supplemented group. The placebo group remained unchanged. CONCLUSIONS: The NVC demonstrates that augmenting MPOD in individuals with difficulty in night vision showed measurable benefits in numerous visual functions that are important for night vision driving in this small sample RCT. Additionally, we observed an improvement in UFOV divided attention test scores and decreased composite risk scores.


Assuntos
Suplementos Nutricionais , Luteína/farmacologia , Pigmento Macular/metabolismo , Visão Noturna/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Acuidade Visual/efeitos dos fármacos , Zeaxantinas/farmacologia , Acidentes de Trânsito/prevenção & controle , Idoso , Condução de Veículo , Método Duplo-Cego , Feminino , Humanos , Macula Lutea/efeitos dos fármacos , Macula Lutea/metabolismo , Degeneração Macular , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Testes de Campo Visual
7.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439503

RESUMO

Age-related macular degeneration (AMD) remains a leading cause of modifiable vision loss in older adults. Chronic oxidative injury and compromised antioxidant defenses represent essential drivers in the development of retinal neurodegeneration. Overwhelming free radical species formation results in mitochondrial dysfunction, as well as cellular and metabolic imbalance, which becomes exacerbated with increasing age. Thus, the depletion of systemic antioxidant capacity further proliferates oxidative stress in AMD-affected eyes, resulting in loss of photoreceptors, neuroinflammation, and ultimately atrophy within the retinal tissue. The aim of this systematic review is to examine the neuroprotective potential of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin on retinal neurodegeneration for the purpose of adjunctive nutraceutical strategy in the management of AMD. A comprehensive literature review was performed to retrieve 55 eligible publications, using four database searches from PubMed, Embase, Cochrane Library, and the Web of Science. Epidemiology studies indicated an enhanced risk reduction against late AMD with greater dietary consumption of carotenoids, meanwhile greater concentrations in macular pigment demonstrated significant improvements in visual function among AMD patients. Collectively, evidence strongly suggests that carotenoid vitamin therapies offer remarkable synergic protection in the neurosensory retina, with the potential to serve as adjunctive nutraceutical therapy in the management of established AMD, albeit these benefits may vary among different stages of disease.

8.
Nutrients ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371951

RESUMO

Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-related ocular problems are exponentially increasing in the developed world. Oxidative stress due to hyperglycemic states and its associated inflammation is one of the pathological mechanisms which leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function in retinal diseases such as age-related macular degeneration that has oxidative damage central in its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We performed a comprehensive literature review of the National Library of Medicine and Web of Science databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early interventional trials with dietary carotenoid supplementation show promise in improving their levels in serum and macular pigments concomitant with benefits in visual performance. These findings provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct nutraceutical strategy for management of diabetic retinopathy.


Assuntos
Carotenoides/uso terapêutico , Retinopatia Diabética/dietoterapia , Suplementos Nutricionais , Luteína/uso terapêutico , Zeaxantinas/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carotenoides/farmacologia , Humanos , Luteína/farmacologia , Pigmento Macular/análise , Zeaxantinas/farmacologia
9.
Nutrients ; 13(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34444721

RESUMO

The study was designed to: (1) Analyze and create protocols of obtaining measurements using the Macular Pigment Reflectometry (MPR). (2) To assess the agreement of MPOD measurements obtained using the heterochromatic flicker photometry (MPS II) and MPR. (3) To obtain the lutein and zeaxanthin optical density obtained using the MPR in the central one-degree of the macula. The measurements were performed using the MPR and heterochromatic flicker photometry. The MPR measurements were performed twice without pupillary dilation and twice following pupillary dilation. The MPR measurements were performed for a 40-s period and the spectrometer signal was parsed at different time points: 10-20, 10-30, 10-40, 20-30, 20-40, and 30-40 s. The MPR analyzes the high-resolution spectrometer signal and calculates MPOD, lutein optical density and zeaxanthin optical density automatically. The MPR-MPOD data was compared with MPPS II-MPOD results. The MPR-MPOD values are highly correlated and in good agreement with the MPS II-MPOD. Of the various parsing of the data, the data 10-30 interval was the best at obtaining the MPOD, lutein, and zeaxanthin values (8-12% coefficient of repeatability). The lutein to zeaxanthin ratio in the central one-degree of the macula was 1:2.40. Dilation was not needed to obtain the MPOD values but provided better repeatability of lutein and zeaxanthin optical density. MPR generates MPOD measurements that is in good agreement with MPS II. The device can produce lutein and zeaxanthin optical density which is not available from other clinical devices.


Assuntos
Técnicas de Diagnóstico Oftalmológico , Luteína/análise , Macula Lutea/química , Pigmento Macular/análise , Adulto , Protocolos Clínicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fotometria , Reprodutibilidade dos Testes , Adulto Jovem , Zeaxantinas/análise
10.
Nutrients ; 13(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204051

RESUMO

Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness globally. Recent evidence further substantiates sustained oxidative stress, and compromised antioxidant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with age-related processes, causing aberrant formation of free radical species. Thus, a compromised systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis, neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investigate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glaucoma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management of glaucoma.


Assuntos
Antioxidantes/administração & dosagem , Carotenoides/administração & dosagem , Suplementos Nutricionais , Glaucoma de Ângulo Aberto/terapia , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Luteína/administração & dosagem , Pigmento Macular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acuidade Visual/efeitos dos fármacos , Zeaxantinas/administração & dosagem
11.
Nutrients ; 12(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114566

RESUMO

PURPOSE: To compare the changes in visual and ocular parameters in individuals with retinal drusen who were treated with two commercially available nutritional supplements. METHODS: An open-label, single-center, randomized, parallel-treatment with an observational control group design was utilized. The treatment groups included individuals with fine retinal drusen sub-clinical age-related macular degeneration (AMD), while the control group consisted of ocular normal individuals. The treatment groups were randomly assigned to the micronized lipid-based carotenoid supplement, Lumega-Z (LM), or the PreserVision Age-Related Eye Disease Study 2 (AREDS-2) soft gel (PV). Visual performance was evaluated using the techniques of visual acuity, dark adaptation recovery and contrast sensitivity, at baseline, three months, and six months. Additionally, the macular pigment optical density (MPOD) was measured. The control group was not assigned any carotenoid supplement. The right eye and left eye results were analyzed separately. RESULTS: Seventy-nine participants were recruited for this study, of which 68 qualified and 56 participants had useable reliable data. Of the individuals who completed this study, 25 participants belonged to the LM group, 16 belonged to the PV group, and 15 to the control group. The LM group demonstrated statistically significant improvements in contrast sensitivity function (CSF) in both eyes at six months (p < 0.001). The LM group displayed a positive linear trend with treatment time in CSF (p < 0.001), with benefits visible after just three months of supplementation. Although there was a trend showing improvement in CSF in the PV group, the change was not significant after a Bonferroni-corrected p-value of p < 0.00625. Visual acuity, dark adaptation recovery and MPOD did not significantly improve in either treatment groups. CONCLUSION: The LM group demonstrated greater and faster benefits in visual performance as measured by CSF when compared to the PV group. This trial has been registered at clinicaltrials.gov (NCT03946085).


Assuntos
Carotenoides/administração & dosagem , Suplementos Nutricionais , Lipídeos/administração & dosagem , Degeneração Macular/terapia , Drusas Retinianas/terapia , Idoso , Feminino , Humanos , Luteína/administração & dosagem , Degeneração Macular/metabolismo , Pigmento Macular/metabolismo , Masculino , Pessoa de Meia-Idade , Drusas Retinianas/metabolismo , Resultado do Tratamento , Acuidade Visual/efeitos dos fármacos , Zeaxantinas/administração & dosagem
12.
Ther Adv Ophthalmol ; 12: 2515841420924167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596637

RESUMO

OBJECTIVE: The aim of this study is to compare macular pigment optical density levels across four different ethnicities and study its influence on ganglion cell layer and retinal nerve fibre layer thickness across these ethnicities. METHODS: Consenting adults visiting the ophthalmology and optometry clinics for a routine eye examination without any ocular comorbidity were enrolled. Participants underwent optical coherence tomography for macular thickness, retinal nerve fibre layer thickness and ganglion cell layer thickness. The macular pigment optical density levels were determined in the dominant eye using the QuantifEye device by trained observers. RESULTS: In total, 336 eyes of 336 participants with a mean age of 39.2 ± 14.4 years were included of which 103 (30%) were Caucasians, 111 (33%) were African Americans, 29 (9%) were South Asian Indians and 94 (28%) were Hispanics. The mean macular pigment optical density value across the entire study population was 0.47 ± 0.15. South Asian Indians (0.58 ± 0.16) and Hispanics (0.52 ± 0.15) had significantly higher mean macular pigment optical density values compared with Caucasians (0.41 ± 0.16) and African Americans (0.38 ± 0.15). Linear regression analysis showed that there was a significant association between ethnicities and macular pigment optical density values when adjusted for age (ß coefficient = 0.31, 95% confidence interval = 0.029-0.58, p < 0.001 for South Asian Indian and Hispanic ethnic groups compared with African Americans). There were no differences in the retinal nerve fibre layer and ganglion cell layer thickness across ethnic groups. Linear regression analysis also did not reveal any significant association between macular pigment optical density levels and retinal nerve fibre layer or ganglion cell layer thickness. CONCLUSION: Caucasians and African Americans have lower macular pigment optical density compared with South Asian Indians and Hispanics. There is no clinically significant association between macular pigment optical density levels and retinal nerve fibre layer and ganglion cell layer thickness in healthy individuals across races.

13.
Nutrients ; 12(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384663

RESUMO

Purpose: To compare the change in serum carotenoids, macular pigment optical density (MPOD) and visual function with the intake of two commercially available nutritional supplements. Methods: Participants were given a 24-week supply of a lipid-based micronized liquid medical food, Lumega-Z™ (LM), containing 28 mg of the macular carotenoids lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ), or given PreserVision™ AREDS 2 Formula (gel-caps; PV) containing 12 mg of the macular carotenoids L and Z, but no reported MZ. Serum levels of L, Z and MZ were obtained at baseline and after 12 weeks. Macular pigment optical densities (MPOD) and visual function were assessed at baseline and after 24 weeks. Results: Average blood serum concentrations of L, Z and MZ in the two groups at baseline were similar. The increases in L, Z and MZ were 0.434, 0.063 and 0.086 mol/L vs. 0.100, 0.043 and 0.001 mol/L, respectively, in the LM vs. PV group. From baseline to week 24, average MPOD in the LM-group increased by 0.064 from 0.418 to 0.482, whereas in the PV-group, it was essentially unchanged (0.461 to 0.459;). Although log-contrast sensitivity was improved in all groups under three conditions (photopic, mesopic and mesopic with glare), the change in log-contrast sensitivity was not statistically significant. Conclusion: Despite only a 2.3-fold higher carotenoid concentration than PV, LM supplementation provides approximately 3-4-fold higher absorption, which leads to a significant elevation of MPOD levels.


Assuntos
Carotenoides/administração & dosagem , Suplementos Nutricionais , Luteína/administração & dosagem , Pigmento Macular/metabolismo , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia , Acuidade Visual/efeitos dos fármacos , Acuidade Visual/fisiologia , Zeaxantinas/administração & dosagem , Adulto , Fatores Etários , Carotenoides/análise , Carotenoides/farmacologia , Feminino , Humanos , Luteína/sangue , Luteína/farmacologia , Masculino , Pessoa de Meia-Idade , Recomendações Nutricionais , Fatores de Tempo , Adulto Jovem , Zeaxantinas/sangue , Zeaxantinas/farmacologia
14.
J Vis Exp ; (155)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32065154

RESUMO

The macular pigment reflectometer (MPR) objectively measures the overall macular pigment optical density (MPOD) and further provides the lutein optical density (L-OD) and zeaxanthin optical density (Z-OD) in the central 1 degree of the fovea. A modification of the technique was developed to evaluate in vivo carotenoid density eccentric to the fovea. An adjustable track system with red LED lights was placed 6.1 m away from the participant to facilitate ocular fixation. Lights were spaced appropriately to create increments of 1 degree retinal disparity during the reflectometry measurements. All reflectometry measurements were obtained with pupillary dilation. The mean MPR-MPOD value for the central measurement was 0.593 (SD 0.161) with an L-OD to Z-OD ratio of 1:2.61. The MPR-MPOD value at 1 degree was 0.248 and the mean MPR-MPOD value at 2 degrees in the parafoveal region was 0.143. The L-OD to Z-OD ratio at 1 degree and 2 degrees off center was 1.38:1.0 and 2.08:1.0, respectively. The results demonstrate that MPOD measurements obtained using the MPR decrease as a function of retinal eccentricity and that there is a higher concentration of zeaxanthin centrally compared to lutein. The L-OD to Z-OD ratio changes with foveal eccentricity, with twice more lutein than zeaxanthin at 2 degrees off center. Our technique successfully provides a quick in vivo method for the measurement of macular pigment optical density at various foveal eccentricities. The results agree with prior published in vivo and in vitro xanthophyll carotenoid density distribution measurements.


Assuntos
Carotenoides/análise , Fóvea Central/química , Pigmento Macular/análise , Oftalmologia/instrumentação , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Adulto Jovem
15.
Transl Vis Sci Technol ; 7(5): 28, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30356944

RESUMO

PURPOSE: In order to monitor visual defects associated with macular degeneration (MD), we present a new psychophysical assessment called multiline adaptive perimetry (MAP) that measures visual field integrity by simultaneously estimating regions associated with perceptual distortions (metamorphopsia) and visual sensitivity loss (scotoma). METHODS: We first ran simulations of MAP with a computerized model of a human observer to determine optimal test design characteristics. In experiment 1, predictions of the model were assessed by simulating metamorphopsia with an eye-tracking device with 20 healthy vision participants. In experiment 2, eight patients (16 eyes) with macular disease completed two MAP assessments separated by about 12 weeks, while a subset (10 eyes) also completed repeated Macular Integrity Assessment (MAIA) microperimetry and Amsler grid exams. RESULTS: Results revealed strong repeatability of MAP and high accuracy, sensitivity, and specificity (0.89, 0.81, and 0.90, respectively) in classifying patient eyes with severe visual impairment. We also found a significant relationship in terms of the spatial patterns of performance across visual field loci derived from MAP and MAIA microperimetry. However, there was a lack of correspondence between MAP and subjective Amsler grid reports in isolating perceptually distorted regions. CONCLUSIONS: These results highlight the validity and efficacy of MAP in producing quantitative maps of visual field disturbances, including simultaneous mapping of metamorphopsia and sensitivity impairment. TRANSLATIONAL RELEVANCE: Future work will be needed to assess applicability of this examination for potential early detection of MD symptoms and/or portable assessment on a home device or computer.

16.
Front Psychol ; 9: 899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962982

RESUMO

Contrast sensitivity (CS), the ability to detect small spatial changes of luminance, is a fundamental aspect of vision. However, while visual acuity is commonly measured in eye clinics, CS is often not assessed. At issue is that tests of CS are not highly standardized in the field and that, in many cases, optotypes used are not sensitive enough to measure graduations of performance and visual abilities within the normal range. Here, in order to develop more sensitive measures of CS, we examined how CS is affected by different combinations of glare and ambient lighting in young healthy participants. We found that low levels of glare have a relatively small impact on vision under both photopic and mesopic conditions, while higher levels had significantly greater consequences on CS under mesopic conditions. Importantly, we found that the amount of glare induced by a standard built-in system (69 lux) was insufficient to induce CS reduction, but increasing to 125 lux with a custom system did cause a significant reduction and shift of CS in healthy individuals. This research provides important data that can help guide the use of CS measures that yield more sensitivity to characterize visual processing abilities in a variety of populations with ecological validity for non-ideal viewing conditions such as night time driving.

17.
Clin Ophthalmol ; 12: 849-857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765199

RESUMO

IMPORTANCE: The paper presents the range for measurements taken with a new spectral domain optical coherence tomography (OCT) device to establish a reference database for discrimination purposes. OBJECTIVE: To report the range of thickness values for the new Topcon Maestro 3D OCT device with 2 scan size settings: the 12×9 mm wide field and 6×6 mm scans. DESIGN: Prospective, multicenter cohort study conducted at 7 clinical sites across the USA. SETTING: Primary eyecare clinics within academic, hospital, and private practice locations. PARTICIPANTS: Healthy volunteers; all enrolled participants underwent a complete ophthalmological examination to confirm healthy ocular status prior to being enrolled in the study. MAIN OUTCOME MEASURE: Average and 1st, 5th, 95th, and 99th percentile ranges for OCT parameters Early Treatment Diabetic Retinopathy Study macula full retinal thickness, ganglion cell + inner plexiform layer thickness (GCL + IPL), ganglion cell complex (GCC) thickness, circumpapillary retinal nerve fiber layer (cpRNFL) thickness. RESULTS: Three hundred and ninety-nine eyes of 399 subjects were included in the analysis. Mean (SD) age was 46.3 (16.3) years (range 18-88 years). Forty-three percent of the subjects were male. Mean (SD) measurements (in µm) for the 12×9 mm wide scan were as follows: foveal thickness=237.079 (20.899), GCL + IPL=71.363 (5.924), GCC=105.949 (8.533), cpRNFL=104.720 (11.829); measurements for the 6×6 mm scans were as follows: foveal thickness=234.000 (20.657), GCL + IPL=71.726 (5.880), GCC=106.698 (9.094), cpRNFL=104.036 (11.341). CONCLUSION: The overall normal thickness values reported with Topcon 3D OCT-1 Maestro were like those studies with OCT from different manufactures. The reference limits at the 1st, 5th, 95th, and 99th percentile points establish the thresholds for the quantitative comparison of the cpRNFL and the macula in the human retina to a database of known healthy subjects.

18.
Clin Ophthalmol ; 12: 85-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379269

RESUMO

PURPOSE: To evaluate the measurement of anisocoria in a group of ocular healthy subjects using a standardized protocol in scotopic, mesopic, and photopic lighting conditions, and determine the optimal threshold of difference in pupil diameter in determining physiologic anisocoria. METHODS: Right and left pupil diameters of 126 ocular healthy subjects with a mean age 30.5±7.8 years (40 males and 86 females) were measured sequentially under photopic conditions using a monocular infrared pupillometer. A sub-group of 51 individuals had right and left pupil measurements performed under three additional lighting conditions, allowing for a 2-minute recovery between measurements. A white light emitting diode (LED) in the eyecup of the pupillometer produced three controlled light settings: scotopic (0 lux), low mesopic (0.3 lux), and high mesopic (3 lux). The criterion for anisocoria was defined as ≥0.4 mm difference in pupil diameter between the eyes. RESULTS: In the 126 subjects tested, 23.8% (n=30) exhibited anisocoria in photopic conditions. In the sub-group measured under three additional light settings, 43.1% (n=22) exhibited anisocoria in scotopic conditions, 43.1% (n=22) in low mesopic conditions, and 47.1% (n=24) in high mesopic conditions. Approximately 73% of subjects exhibited anisocoria in at least one light setting, while only approximately 8% had anisocoria in every light setting. When the criterion for anisocoria was shifted to ≥0.2 mm or ≥0.6 mm, the prevalence of anisocoria shifted significantly. Using a higher cutoff of ≥0.6 mm effectively reduced the number of healthy individuals who exhibit anisocoria in every light setting to almost zero. CONCLUSION: Based on our data, anisocoria is more prevalent under varied lighting conditions. To ensure the anisocoria is due to physiologic reasons, one should ensure that it is present under all lighting conditions to avoid excessive false positives.

19.
Clin Exp Optom ; 100(2): 179-183, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27701775

RESUMO

BACKGROUND: The aims of this study were to evaluate the intra- and inter-observer repeatability of intraocular pressure (IOP) estimates obtained using an iCare rebound tonometer and to investigate the variation in IOP measurements due to positional differences in probe placement on the cornea. METHODS: The IOP estimates were obtained by two observers, twice on one eye, of 114 subjects using an iCare tonometer on the central cornea. Additionally, IOP and corneal thickness were measured in 38 subjects at three locations, namely, central, at 1.5 mm nasally and at 1.5 mm temporally from the central cornea. Agreement among measurements was assessed using Bland and Altman plots and the difference in measurements obtained by the observers was compared using paired t-test. Values obtained from central, nasal and temporal regions were compared using one-way analysis of variance. RESULTS: The mean IOP measurements obtained by observer 1 on two attempts were 16.2 and 16.0 mmHg (p > 0.05) were significantly different from the IOP values obtained by observer 2 on two occasions (16.3 and 15.7 mmHg; p < 0.0001). The limits of agreement (LOA) of intra-observer repeatability were -2.9 to +2.6 mmHg and -3.4 to +2.2 for observers 1 and 2, respectively. The LOA of inter-observer repeatability for first and second sequences were -2.8 to +3.0 mmHg and -3.3 to +2.7 mmHg with the second sequence of measurements being significantly different (p = 0.03). Although the corneal thickness was significantly greater nasally and temporally, when compared to the central location, by 32 and 20 microns respectively (p < 0.0001), the measured IOPs on those locations were not significantly different, when compared to the central measurements (p = 0.14). CONCLUSION: There is good intra- and inter-observer repeatability of IOP data, as obtained by the iCare rebound tonometer, although the results may be slightly influenced by practitioner experience. The difference in IOP estimates obtained by different observers is unlikely to be of clinical significance. Corneal thickness showed regional variation; however, this did not influence IOP measurements obtained from those locations.


Assuntos
Pressão Intraocular , Tonometria Ocular , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
20.
J Vis ; 16(15): 15, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28006065

RESUMO

Contrast sensitivity (CS) is widely used as a measure of visual function in both basic research and clinical evaluation. There is conflicting evidence on the extent to which measuring the full contrast sensitivity function (CSF) offers more functionally relevant information than a single measurement from an optotype CS test, such as the Pelli-Robson chart. Here we examine the relationship between functional CSF parameters and other measures of visual function, and establish a framework for predicting individual CSFs with effectively a zero-parameter model that shifts a standard-shaped template CSF horizontally and vertically according to independent measurements of high contrast acuity and letter CS, respectively. This method was evaluated for three different CSF tests: a chart test (CSV-1000), a computerized sine-wave test (M&S Sine Test), and a recently developed adaptive test (quick CSF). Subjects were 43 individuals with healthy vision or impairment too mild to be considered low vision (acuity range of -0.3 to 0.34 logMAR). While each test demands a slightly different normative template, results show that individual subject CSFs can be predicted with roughly the same precision as test-retest repeatability, confirming that individuals predominantly differ in terms of peak CS and peak spatial frequency. In fact, these parameters were sufficiently related to empirical measurements of acuity and letter CS to permit accurate estimation of the entire CSF of any individual with a deterministic model (zero free parameters). These results demonstrate that in many cases, measuring the full CSF may provide little additional information beyond letter acuity and contrast sensitivity.


Assuntos
Sensibilidades de Contraste/fisiologia , Testes Visuais/métodos , Acuidade Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Baixa Visão/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...