Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Immunol ; 3(19)2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374079

RESUMO

Toll-like receptor 7 (TLR7) is critical to the induction of antiviral immunity, but TLR7 dosage is also a key pathogenic factor in systemic lupus erythematosus (SLE), an autoimmune disease with strong female bias. SLE prevalence is also elevated in individuals with Klinefelter syndrome, who carry one or more supernumerary X chromosomes, suggesting that the X chromosome complement contributes to SLE susceptibility. TLR7 is encoded by an X chromosome locus, and we examined here whether the TLR7 gene evades silencing by X chromosome inactivation in immune cells from women and Klinefelter syndrome males. Single-cell analyses of TLR7 allelic expression demonstrated that substantial fractions of primary B lymphocytes, monocytes, and plasmacytoid dendritic cells not only in women but also in Klinefelter syndrome males express TLR7 on both X chromosomes. Biallelic B lymphocytes from women displayed greater TLR7 transcriptional expression than the monoallelic cells, correlated with higher TLR7 protein expression in female than in male leukocyte populations. Biallelic B cells were preferentially enriched during the TLR7-driven proliferation of CD27+ plasma cells. In addition, biallelic cells showed a greater than twofold increase over monoallelic cells in the propensity to immunoglobulin G class switch during the TLR7-driven, T cell-dependent differentiation of naive B lymphocytes into immunoglobulin-secreting cells. TLR7 escape from X inactivation endows the B cell compartment with added responsiveness to TLR7 ligands. This finding supports the hypothesis that enhanced TLR7 expression owing to biallelism contributes to the higher risk of developing SLE and other autoimmune disorders in women and in men with Klinefelter syndrome.


Assuntos
Ativação Linfocitária/imunologia , Receptor 7 Toll-Like/imunologia , Inativação do Cromossomo X/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , Células Dendríticas/imunologia , Feminino , Humanos , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Ligantes , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
2.
Cardiovasc Res ; 114(1): 123-137, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136112

RESUMO

Aims: Tenascin-C (TNC) is an endogenous danger signal molecule strongly associated with inflammatory diseases and with poor outcome in patients with cardiomyopathies. Its function within pathological cardiac tissue during pressure overload remains poorly understood. Methods and results: We showed that TNC accumulates after 1 week of transverse aortic constriction (TAC) in the heart of 12-week-old male mice. By cross bone marrow transplantation experiments, we determined that TNC deposition relied on cardiac cells and not on haematopoietic cells. The expression of TNC induced by TAC, or by administration of a recombinant lentivector coding for TNC, triggered a pro-inflammatory cardiac microenvironment, monocyte/macrophage (MO/MΦ) accumulation, and systolic dysfunction. TNC modified macrophage polarization towards the pro-inflammatory phenotype and stimulated RhoA/Rho-associated protein kinase (ROCK) pathways to promote mesenchymal to amoeboid transition that enhanced macrophage migration into fibrillar collagen matrices. The amplification of inflammation and MO/MΦ recruitment by TNC was abrogated by genetic invalidation of TNC in knockout mice. These mice showed less ventricular remodelling and an improved cardiac function after TAC as compared with wild-type mice. Conclusions: By promoting a pro-inflammatory microenvironment and macrophage migration, TNC appears to be a key factor to enable the MO/MΦ accumulation within fibrotic hearts leading to cardiac dysfunction. As TNC is highly expressed during inflammation and sparsely during the steady state, its inhibition could be a promising therapeutic strategy to control inflammation and immune cell infiltration in heart disease.


Assuntos
Movimento Celular , Hipertrofia Ventricular Esquerda/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Tenascina/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Microambiente Celular , Quimiocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fenótipo , Transdução de Sinais , Tenascina/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP
3.
Cardiovasc Res ; 108(2): 254-67, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26370247

RESUMO

AIMS: Post-infarction remodelling is accompanied and influenced by perturbations in mitogen-activated protein kinase (MAPK) signalling. The growth arrest and DNA-damage-inducible 45 (Gadd45) proteins are small acidic proteins involved in DNA repair and modulation of MAPK activity. Little is known about the role of Gadd45 in the heart. Here, we explored the potential contribution of Gadd45 gamma (γ) isoform to the acute and late phase of heart failure (HF) after myocardial infarction (MI) and determined the mechanisms underlying Gadd45γ actions. METHODS AND RESULTS: The Gadd45γ isoform is up-regulated in murine cardiomyocytes subjected to simulated ischaemia and in the mouse heart during MI. To mimic the situation observed during MI, we enhanced Gadd45γ content in cardiomyocytes with a single injection of an adeno-associated viral (AAV9) vector encoding Gadd45γ under the cTNT promoter. Gadd45γ overexpression induces cardiomyocyte apoptosis, fibrosis, left ventricular dysfunction, and HF. On the other hand, genetic deletion of Gadd45γ in knockout mice confers resistance to ischaemic injury, at least in part by limiting cardiomyocyte apoptosis. Mechanistically, Gadd45γ activates receptor-interacting protein 1 (RIP1) and caspase-8 in a p38 MAPK-dependent manner to promote cardiomyocyte death. CONCLUSION: This work is the first to demonstrate that Gadd45γ accumulation during MI promotes the development and persistence of HF by inducing cardiomyocyte apoptosis in a p38 MAPK-dependent manner. We clearly identify Gadd45γ as a therapeutic target in the development of HF.


Assuntos
Proteínas de Transporte/metabolismo , Insuficiência Cardíaca/etiologia , Sistema de Sinalização das MAP Quinases , Infarto do Miocárdio/complicações , Remodelação Ventricular , Animais , Caspase 8/metabolismo , Células Cultivadas , Proteínas Ativadoras de GTPase/metabolismo , Insuficiência Cardíaca/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
4.
J. physiol. biochem ; 71(3): 497-507, sept. 2015.
Artigo em Inglês | IBECS | ID: ibc-142446

RESUMO

The mechanisms underlying the relationships between nutritional status and immunity remain to be fully characterized. The present study was undertaken to analyze by flow cytometry, in the context of diet-induced obesity, the status of immune cells in subcutaneous, and epididymal fat depots in wild-type and immunodeficient Rag2−/− mice submitted to nutritional challenge, i.e., 48-h fasting and 1-week refeeding. In parallel, the responsiveness of mature adipocytes and immune cells in bone marrow, lymph node, and liver were also analyzed. The results show that fasting in obese wild-type mice induces a prominent lipolysis in epididymal AT and immunosuppression restricted to both subcutaneous and epididymal AT, characterized by reduced number of CD4+ T and B lymphocytes and M1/M2 macrophages associated with reduced leptin and increased FGF21 expression in mature adipocytes. One-week refeeding was sufficient to reverse the fasting-induced effects. Obese immunodeficient mice under nutritional challenge exhibited no changes in adipocyte leptin expression and no marked trafficking of AT macrophages or NK cells, while the fasted-induced upregulation of FGF21 expression was maintained as well as the lipolytic responses. The present results demonstrate that, in a context of diet-induced obesity, fasting-induced immunosuppression is restricted to fat depots in immunocompetent mice. Lack of adipocyte leptin regulation and fasting-induced immunosuppression in obese immunodeficient mice strongly suggests that lymphocytes are involved in the modulation of adipocyte leptin expression on one hand and on the other that leptin is involved in the immune changes in AT according to nutritional status


Assuntos
Animais , Ratos , Leptina/farmacocinética , Linfócitos/fisiologia , Obesidade/fisiopatologia , Inflamação/fisiopatologia , Imunidade/fisiologia , Estado Nutricional/fisiologia , Citometria de Fluxo , Síndrome da Realimentação/fisiopatologia , Dieta Hiperlipídica , Macrófagos/fisiologia , Modelos Animais de Doenças
5.
J Physiol Biochem ; 71(3): 497-507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25670497

RESUMO

The mechanisms underlying the relationships between nutritional status and immunity remain to be fully characterized. The present study was undertaken to analyze by flow cytometry, in the context of diet-induced obesity, the status of immune cells in subcutaneous, and epididymal fat depots in wild-type and immunodeficient Rag2-/- mice submitted to nutritional challenge, i.e., 48-h fasting and 1-week refeeding. In parallel, the responsiveness of mature adipocytes and immune cells in bone marrow, lymph node, and liver were also analyzed. The results show that fasting in obese wild-type mice induces a prominent lipolysis in epididymal AT and immunosuppression restricted to both subcutaneous and epididymal AT, characterized by reduced number of CD4+ T and B lymphocytes and M1/M2 macrophages associated with reduced leptin and increased FGF21 expression in mature adipocytes. One-week refeeding was sufficient to reverse the fasting-induced effects. Obese immunodeficient mice under nutritional challenge exhibited no changes in adipocyte leptin expression and no marked trafficking of AT macrophages or NK cells, while the fasted-induced upregulation of FGF21 expression was maintained as well as the lipolytic responses. The present results demonstrate that, in a context of diet-induced obesity, fasting-induced immunosuppression is restricted to fat depots in immunocompetent mice. Lack of adipocyte leptin regulation and fasting-induced immunosuppression in obese immunodeficient mice strongly suggests that lymphocytes are involved in the modulation of adipocyte leptin expression on one hand and on the other that leptin is involved in the immune changes in AT according to nutritional status.


Assuntos
Leptina/fisiologia , Linfócitos/fisiologia , Obesidade/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica/efeitos adversos , Tolerância Imunológica , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/imunologia , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo , Gordura Subcutânea/patologia
6.
Gastroenterology ; 144(4): 771-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313268

RESUMO

BACKGROUND & AIMS: Glucose is absorbed into intestine cells via the sodium glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2); various peptides and hormones control this process. Apelin is a peptide that regulates glucose homeostasis and is produced by proximal digestive cells; we studied whether glucose modulates apelin secretion by enterocytes and the effects of apelin on intestinal glucose absorption. METHODS: We characterized glucose-related luminal apelin secretion in vivo and ex vivo by mass spectroscopy and immunologic techniques. The effects of apelin on (14)C-labeled glucose transport were determined in jejunal loops and in mice following apelin gavage. We determined levels of GLUT2 and SGLT-1 proteins and phosphorylation of AMPKα2 by immunoblotting. The net effect of apelin on intestinal glucose transepithelial transport was determined in mice. RESULTS: Glucose stimulated luminal secretion of the pyroglutaminated apelin-13 isoform ([Pyr-1]-apelin-13) in the small intestine of mice. Apelin increased specific glucose flux through the gastric epithelial barrier in jejunal loops and in vivo following oral glucose administration. Conversely, pharmacologic apelin blockade in the intestine reduced the increased glycemia that occurs following oral glucose administration. Apelin activity was associated with phosphorylation of AMPKα2 and a rapid increase of the GLUT2/SGLT-1 protein ratio in the brush border membrane. CONCLUSIONS: Glucose amplifies its own transport from the intestinal lumen to the bloodstream by increasing luminal apelin secretion. In the lumen, active apelin regulates carbohydrate flux through enterocytes by promoting AMPKα2 phosphorylation and modifying the ratio of SGLT-1:GLUT2. The glucose-apelin cycle might be pharmacologically handled to regulate glucose absorption and assess better control of glucose homeostasis.


Assuntos
Carboidratos/farmacocinética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Análise de Variância , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Western Blotting , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Glucose/farmacologia , Transportador de Glucose Tipo 2/metabolismo , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Distribuição Aleatória , Valores de Referência , Transportador 1 de Glucose-Sódio/metabolismo
7.
Diabetes ; 61(2): 310-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210322

RESUMO

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 µmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Adipocinas , Animais , Apelina , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
8.
Cancer Res ; 71(7): 2455-65, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21459803

RESUMO

Early local tumor invasion in breast cancer results in a likely encounter between cancer cells and mature adipocytes, but the role of these fat cells in tumor progression remains unclear. We show that murine and human tumor cells cocultivated with mature adipocytes exhibit increased invasive capacities in vitro and in vivo, using an original two-dimensional coculture system. Likewise, adipocytes cultivated with cancer cells also exhibit an altered phenotype in terms of delipidation and decreased adipocyte markers associated with the occurrence of an activated state characterized by overexpression of proteases, including matrix metalloproteinase-11, and proinflammatory cytokines [interleukin (IL)-6, IL-1ß]. In the case of IL-6, we show that it plays a key role in the acquired proinvasive effect by tumor cells. Equally important, we confirm the presence of these modified adipocytes in human breast tumors by immunohistochemistry and quantitative PCR. Interestingly, the tumors of larger size and/or with lymph nodes involvement exhibit the higher levels of IL-6 in tumor surrounding adipocytes. Collectively, all our data provide in vitro and in vivo evidence that (i) invasive cancer cells dramatically impact surrounding adipocytes; (ii) peritumoral adipocytes exhibit a modified phenotype and specific biological features sufficient to be named cancer-associated adipocytes (CAA); and (iii) CAAs modify the cancer cell characteristics/phenotype leading to a more aggressive behavior. Our results strongly support the innovative concept that adipocytes participate in a highly complex vicious cycle orchestrated by cancer cells to promote tumor progression that might be amplified in obese patients.


Assuntos
Adipócitos/patologia , Neoplasias da Mama/patologia , Adipócitos/imunologia , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-6/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo
9.
Am J Physiol Endocrinol Metab ; 298(6): E1161-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20233941

RESUMO

Apelin, an adipocyte-secreted factor upregulated by insulin, is increased in adipose tissue (AT) and plasma with obesity. Apelin was recently identified as a new player in the control of glucose homeostasis. However, the regulation of apelin and APJ (apelin receptor) expression in skeletal muscle in relation to insulin resistance or type 2 diabetes is not known. Thus we studied apelin and APJ expression in AT and muscle in different mice models of obesity and in type 2 diabetic patients. In insulin-resistant high-fat (HF)-fed mice, apelin and APJ expression were increased in AT compared with control. This was not the case in AT of highly insulin-resistant db/db mice. In skeletal muscle, apelin expression was similar in control and HF-fed mice and decreased in db/db mice. APJ expression was decreased in both HF-fed and db/db mice. Control subjects and type 2 diabetic patients were subjected to a hyperinsulinemic-euglycemic clamp, and tissues biopsies were obtained before and at the end of the clamp. There was no significant difference in basal apelin and APJ expression in AT and muscle between control and diabetic patients. However, apelin plasma levels were significantly increased in diabetic patients. During the clamp, hyperinsulinemia increased apelin and APJ expression in AT of control but not in diabetic subjects. In muscle, only APJ mRNA levels were increased in control but also in diabetic patients. Taken together, these data show that apelin and APJ expression in mice and humans is regulated in a tissue-dependent manner and according to the severity of insulin resistance.


Assuntos
Tecido Adiposo/fisiologia , Proteínas de Transporte/biossíntese , Diabetes Mellitus Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Músculo Esquelético/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Adipocinas , Tecido Adiposo/metabolismo , Adulto , Animais , Apelina , Receptores de Apelina , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Humanos , Insulina/sangue , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Cell Metab ; 8(5): 437-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19046574

RESUMO

Adipose tissue (AT) secretes several adipokines that influence insulin sensitivity and potentially link obesity to insulin resistance. Apelin, a peptide present in different tissues, is also secreted by adipocytes. Apelin is upregulated in obese and hyperinsulinemic humans and mice. Although a tight relation exists between the regulation of apelin and insulin, it remains largely unknown whether apelin affects whole-body glucose utilization. Herein, we show that in chow-fed mice, acute intravenous injection of apelin has a powerful glucose-lowering effect associated with enhanced glucose utilization in skeletal muscle and AT. Through in vivo and in vitro pharmacological and genetic approaches, we demonstrate the involvement of endothelial NO synthase, AMP-activated protein kinase, and Akt in apelin-stimulated glucose uptake in soleus muscle. Remarkably, in obese and insulin-resistant mice, apelin restored glucose tolerance and increased glucose utilization. Apelin could thus represent a promising target in the management of insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Transporte/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas , Animais , Apelina , Proteínas de Transporte/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo
11.
PLoS One ; 3(10): e3345, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18846213

RESUMO

Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate that an up-regulation of this process might be observed in post-mitotic long-lived cells.


Assuntos
Adipócitos/fisiologia , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células 3T3 , Adipócitos/citologia , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
Regul Pept ; 150(1-3): 33-7, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18501443

RESUMO

By using pangenomic microarray, we identified apelin as a unique adipokine up regulated by the transcriptional co-activator peroxisome proliferator-activated receptor gamma (PPARgamma) co-activator 1alpha (PGC-1alpha) in human white adipocytes. We investigated its regulation in vitro and in vivo. Overexpression of PGC-1alpha by adenovirus in human adipocytes induces apelin expression and secretion. Pharmacological induction of cAMP, an upstream regulator of endogenous PGC-1alpha expression, up regulates apelin gene expression and also apelin secretion in human and mice adipocytes. Moreover, during cold exposure in mice, a physiological situation known to induce both cAMP and PGC-1alpha, apelin expression in adipocytes and plasma levels were increased. This is the first demonstration that PGC-1alpha is involved in the regulation of an adipokine gene expression and release.


Assuntos
Adipócitos/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo Branco/citologia , Animais , Apelina , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Eur J Endocrinol ; 158(6): 905-10, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18390990

RESUMO

OBJECTIVE: Apelin is a novel adipokine acting on APJ receptor, regulated by insulin and tumor necrosis factor-alpha (TNF-alpha) in adipose tissue (AT). Plasma apelin levels are increased in obese hyperinsulinemic subjects. The aim was to investigate whether the hypocaloric diet associated with weight loss modifies the elevated plasma apelin levels and the expression of apelin and APJ receptor in AT in obese women. DESIGN AND METHODS: Fasting plasma levels of apelin and TNF-alpha as well as mRNA levels of apelin and APJ in AT were measured before and after a 12-week hypocaloric weight-reducing diet in 20 obese women (body mass index (BMI) before diet 32.2+/-6.4 kg/m(2)). Twelve healthy women with a BMI of 20.7+/-0.6 kg/m(2) served as reference. RESULTS: Plasma levels of apelin and TNF-alpha were higher in obese compared with lean controls. The hypocaloric diet resulted in a significant decrease of BMI to 29.8+/-6.3 kg/m(2), plasma insulin (8.16+/-0.73 to 6.58+/-0.66 mU/l), apelin (369+/-25 pg/ml to 257+/-12 pg/ml), TNF-alpha levels (0.66+/-0.04 pg/ml to 0.56+/-0.04 pg/ml), and AT mRNAs of apelin and APJ. In addition, changes in AT mRNA apelin were related to changes in AT mRNA APJ levels. CONCLUSION: The hypocaloric diet associated with weight loss reduces the increased plasma and AT expression of apelin in obese women. This reduced apelin expression in AT could contribute to decreased circulating apelin levels.


Assuntos
Tecido Adiposo/metabolismo , Dieta com Restrição de Carboidratos/métodos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Obesidade/dietoterapia , Receptores Acoplados a Proteínas G/sangue , Redução de Peso , Adulto , Apelina , Receptores de Apelina , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo , Resultado do Tratamento
14.
Biochimie ; 89(8): 916-25, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17400359

RESUMO

A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.


Assuntos
Adipócitos/enzimologia , Adipogenia , Amina Oxidase (contendo Cobre)/metabolismo , Monoaminoxidase/metabolismo , Células 3T3 , Células 3T3-L1 , Adipócitos/metabolismo , Adulto , Amina Oxidase (contendo Cobre)/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula , Feminino , Humanos , Lactente , Camundongos , Pessoa de Meia-Idade , Monoaminoxidase/genética , RNA Mensageiro/metabolismo
15.
Metabolism ; 55(10): 1397-405, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16979412

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO) is known to increase during in vitro adipogenesis and to be one of the most highly expressed membrane proteins of white adipocytes. Although less well documented, mitochondrial monoamine oxidases (MAOs) are also present in adipocytes and share with SSAO the capacity to generate hydrogen peroxide. This work therefore aimed to compare several biologic effects of MAO and SSAO substrates in 3T3-F442A adipocytes. In differentiated cells, tyramine oxidation was predominantly MAO dependent, whereas benzylamine oxidation was SSAO dependent. Both amines partially mimicked insulin actions, including stimulation of Akt phosphorylation and glucose uptake. In addition, tyramine and benzylamine impaired tumor necrosis factor alpha-dependent nitric oxide formation in a pargyline- and semicarbazide-sensitive manner, respectively. Various biogenic amines were tested in competition for tyramine or benzylamine oxidation and classified as MAO-preferring (methoxytyramine, tryptamine) or SSAO-preferring substrates (methylamine, octopamine). Short-term incubation with 1 mmol/L of all amines except histamine stimulated glucose uptake up to 20% to 50% of maximal insulin activation. One-week treatment with either MAO or SSAO substrates alone allowed postconfluent cells to differentiate into adipocytes, reproducing 60% of insulin-promoted lipid accumulation. All amines also exerted a slight improvement in the adipogenic action of insulin. Therefore, like SSAO, substrate activation of MAO can interact with adipocyte metabolism by mimicking diverse effects of insulin in addition to preventing tumor necrosis factor alpha-dependent responses.


Assuntos
Adipócitos/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Insulina/fisiologia , Monoaminoxidase/metabolismo , Células 3T3 , Animais , Benzamidas/metabolismo , Transporte Biológico Ativo , Diferenciação Celular/fisiologia , Células Cultivadas , Glucose/metabolismo , Hexoses/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Camundongos , Nitritos/metabolismo , Fosforilação , Fatores de Necrose Tumoral/metabolismo , Tiramina/metabolismo
16.
FASEB J ; 20(9): 1528-30, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16723381

RESUMO

We have recently identified apelin as a novel adipokine up-regulated by insulin and obesity. Since obesity and insulin resistance are associated with chronically elevated levels of both insulin and TNFalpha, the present study was performed to investigate a putative regulation of apelin expression in adipocytes by TNFalpha. Herein, we report a tight correlation between apelin and TNFalpha expression in adipose tissue of lean and obese humans. Apelin regulation by TNFalpha was further studied in cultured explants of human adipose tissue. The endogenous expression of TNFalpha in adipocytes isolated from the explants was accompanied by a 6-9 h subsequent increase of apelin expression in adipocytes. This increase was reversed by inhibiting TNFalpha expression with 100 microM isobutylmethylxanthine. In different mouse models of obesity, expression of both TNFalpha and apelin was also significantly increased in adipocytes of obese mice. Furthermore, short-term exposure to an i.p. injection of TNFalpha in C57Bl6/J mice induced an increase of apelin expression in adipose tissue as well as apelin plasma levels. Finally, a direct positive effect of TNFalpha has been shown in differentiated 3T3F442A adipocytes on apelin expression and secretion. The signaling pathways of TNFalpha for the induction of apelin were dependent of PI3-kinase, c-Jun NH2-terminal kinase (JNK), and MAPK but not PKC activation. All together, these findings suggest that apelin might be a candidate to better understand potential links between obesity and associated disorders such as inflammation and insulin resistance.


Assuntos
Tecido Adiposo/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Abdome , Adipócitos/citologia , Adipócitos/fisiologia , Adipocinas , Tecido Adiposo/efeitos dos fármacos , Adulto , Animais , Apelina , Proteínas de Transporte , Diferenciação Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/fisiopatologia , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/fisiopatologia
18.
J Biol Chem ; 280(15): 14656-62, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15710620

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid acting via specific G protein-coupled receptors that is synthesized at the extracellular face of adipocytes by a secreted lysophospholipase D (autotaxin). Preadipocytes mainly express the LPA(1) receptor subtype, and LPA increases their proliferation. In monocytes and CV1 cells LPA was recently reported to bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor also known to play a pivotal role in adipogenesis. Here we show that, unlike the PPARgamma agonist rosiglitazone, LPA was unable to increase transcription of PPARgamma-sensitive genes (PEPCK and ALBP) in the mouse preadipose cell line 3T3F442A. In contrast, treatment with LPA decreased PPARgamma2 expression, impaired the response of PPARgamma-sensitive genes to rosiglitazone, reduced triglyceride accumulation, and reduced the expression of adipocyte mRNA markers. The anti-adipogenic activity of LPA was also observed in the human SGBS (Simpson-Golabi-Behmel syndrome) preadipocyte cell line, as well as in primary preadipocytes isolated from wild type mice. Conversely, the anti-adipogenic activity of LPA was not observed in primary preadipocytes from LPA(1) receptor knock-out mice, which, in parallel, exhibited a higher adiposity than wild type mice. In conclusion, LPA does not behave as a potent PPARgamma agonist in adipocytes but, conversely, inhibits PPARgamma expression and adipogenesis via LPA(1) receptor activation. The local production of LPA may exert a tonic inhibitory effect on the development of adipose tissue.


Assuntos
Adipócitos/citologia , Regulação para Baixo , Lisofosfolipídeos/farmacologia , PPAR gama/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Meios de Cultura Livres de Soro/farmacologia , Proteínas de Ligação a Ácido Graxo , Glucose-6-Fosfato Isomerase/metabolismo , Glicoproteínas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Monócitos/citologia , Complexos Multienzimáticos/metabolismo , Oligonucleotídeos/genética , Fosfodiesterase I , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Diester Fosfórico Hidrolases , Pirofosfatases , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/metabolismo
19.
Endocrinology ; 146(4): 1764-71, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15677759

RESUMO

The results presented herein demonstrate that apelin is expressed and secreted by both human and mouse adipocytes. Apelin mRNA levels in isolated adipocytes are close to other cell types present in white adipose tissue or other organs known to express apelin such as kidney, heart, and to a lesser extent brown adipose tissue. Apelin expression is increased during adipocyte differentiation stage. A comparison of four different models of obesity in mice showed a large increase in both apelin expression in fat cells and apelin plasma levels in all the hyperinsulinemia-associated obesities and clearly demonstrated that obesity or high-fat feeding are not the main determinants of the rise of apelin expression. The lack of insulin in streptozotocin-treated mice is associated with a decreased expression of apelin in adipocytes. Furthermore, apelin expression in fat cells is strongly inhibited by fasting and recovered after refeeding, in a similar way to insulin. A direct regulation of apelin expression by insulin is observed in both human and mouse adipocytes and clearly associated with the stimulation of phosphatidylinositol 3-kinase, protein kinase C, and MAPK. These data provide evidence that insulin exerts a direct control on apelin gene expression in adipocytes. In obese patients, both plasma apelin and insulin levels were significantly higher, suggesting that the regulation of apelin by insulin could influence blood concentrations of apelin. The present work identifies apelin as a novel adipocyte endocrine secretion and focuses on its potential link with obesity-associated variations of insulin sensitivity status.


Assuntos
Proteínas de Transporte/genética , Insulina/farmacologia , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo/metabolismo , Animais , Apelina , Proteínas de Transporte/fisiologia , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Hiperinsulinismo/metabolismo , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...