Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 112-113: 24-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35803545

RESUMO

Germline mutations in ETV6 are associated with a syndrome of thrombocytopenia and leukemia predisposition, and ETV6 is among the most commonly mutated genes in leukemias, especially childhood B-cell acute lymphoblastic leukemia. However, the mechanisms underlying disease caused by ETV6 dysfunction are poorly understood. To address these gaps in knowledge, using CRISPR/Cas9, we developed a mouse model of the most common recurrent, disease-causing germline mutation in ETV6. We found defects in hematopoiesis related primarily to abnormalities of the multipotent progenitor population 4 (MPP4) subset of hematopoietic progenitor cells and evidence of sterile inflammation. Expression of ETV6 in Ba/F3 cells altered the expression of several cytokines, some of which were also detected at higher levels in the bone marrow of the mice with Etv6 mutation. Among these, interleukin-18 and interleukin-13 abrogated B-cell development of sorted MPP4 cells, but not common lymphoid progenitors, suggesting that inflammation contributes to abnormal hematopoiesis by impairing lymphoid development. These data, along with those from humans, support a model in which ETV6 dysfunction promotes inflammation, which adversely affects thrombopoiesis and promotes leukemogenesis.


Assuntos
Mutação em Linhagem Germinativa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas c-ets , Animais , Células Germinativas/metabolismo , Humanos , Inflamação/genética , Camundongos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Trombopoese , Variante 6 da Proteína do Fator de Translocação ETS
2.
Biomacromolecules ; 21(7): 2635-2644, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32374589

RESUMO

Cytokine signaling is challenging to study and therapeutically exploit as the effects of these proteins are often pleiotropic. A subset of cytokines can, however, achieve signal specificity via association with latency-inducing proteins, which cage the cytokine until disrupted by discreet biological stimuli. Inspired by this precision, here, we describe a strategy for synthetic induction of cytokine latency via modification with photolabile polymers that mimic latency while attached then restore protein activity in response to light, thus controlling the magnitude, duration, and location of cytokine signals. We characterize the high dynamic range of cytokine activity modulation and find that polymer-induced latency, alone, can prolong in vivo circulation and bias receptor subunit binding. We further show that protein derepression can be achieved with a near single-cell resolution and demonstrate the feasibility of transcutaneous photoactivation. Future extensions of this approach could enable multicolor, optical reprogramming of cytokine signaling networks and more precise immunotherapies.


Assuntos
Polímeros , Transdução de Sinais , Citocinas/metabolismo , Ligação Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...