Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(1): 174-9, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18172210

RESUMO

Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development and progression by regulating genes that are vital for proliferation, glycolysis, angiogenesis, and metastasis. To identify strategies of targeting the HIF-1 pathway, we screened a siRNA library against the entire druggable genome and a small-molecule library consisting of 691,200 compounds using a HIF-1 reporter cell line. Although the siRNA library screen failed to reveal any druggable targets, the small-molecule library screen identified a class of alkyliminophenylacetate compounds that inhibit hypoxia-induced HIF-1 reporter activity at single-digit nanomolar concentrations. These compounds were found to inhibit hypoxia but not deferoxamine-induced HIF-1alpha protein stabilization. Further analysis indicated that the alkyliminophenylacetate compounds likely inhibit the HIF-1 pathway through blocking the hypoxia-induced mitochondrial reactive oxygen species (ROS) production. Strikingly, all of the nonalkyliminophenylacetate HIF-1 inhibitors identified from the small-molecule library screen were also found to target mitochondria like the alkyliminophenylacetate compounds. The exclusive enrichment of mitochondria inhibitors from a library of >600,000 diverse compounds by using the HIF-1 reporter assay highlights the essential role of mitochondria in HIF-1 regulation. These results also suggest that targeting mitochondrial ROS production might be a highly effective way of blocking HIF-1 activity in tumors.


Assuntos
Biblioteca Gênica , Genômica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas , Acetatos/química , Química Farmacêutica/métodos , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Modelos Biológicos , Proteínas Nucleares/química , Farmacogenética/métodos , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio , Tecnologia Farmacêutica/métodos
2.
J Biomol Screen ; 9(1): 3-11, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15006143

RESUMO

The authors report the development of a high-throughput screen for inhibitors of Streptococcus pneumoniae transcription and translation (TT) using a luciferase reporter, and the secondary assays used to determine the biochemical spectrum of activity and bacterial specificity. More than 220,000 compounds were screened in mixtures of 10 compounds per well, with 10,000 picks selected for further study. False-positive hits from inhibition of luciferase activity were an extremely common artifact. After filtering luciferase inhibitors and several known classes of antibiotics, approximately 50 hits remained. These compounds were examined for their ability to inhibit Escherichia coli TT, uncoupled S. pneumoniae translation or transcription, rabbit reticulocyte translation, and in vitro toxicity in human and bacterial cells. One of these compounds had the desired profile of broad-spectrum biochemical activity in bacteria and selectivity versus mammalian biochemical and whole-cell assays.


Assuntos
Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Biossíntese de Proteínas , Streptococcus pneumoniae/efeitos dos fármacos , Transcrição Gênica , Antibacterianos/efeitos adversos , Sequência de Bases , Linhagem Celular Tumoral , DNA Bacteriano , Genes Reporter , Humanos , Luciferases/genética , Dados de Sequência Molecular , Streptococcus pneumoniae/genética
3.
Antimicrob Agents Chemother ; 47(12): 3831-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14638491

RESUMO

We report the discovery and characterization of a novel ribosome inhibitor (NRI) class that exhibits selective and broad-spectrum antibacterial activity. Compounds in this class inhibit growth of many gram-positive and gram-negative bacteria, including the common respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Moraxella catarrhalis, and are nontoxic to human cell lines. The first NRI was discovered in a high-throughput screen designed to identify inhibitors of cell-free translation in extracts from S. pneumoniae. The chemical structure of the NRI class is related to antibacterial quinolones, but, interestingly, the differences in structure are sufficient to completely alter the biochemical and intracellular mechanisms of action. Expression array studies and analysis of NRI-resistant mutants confirm this difference in intracellular mechanism and provide evidence that the NRIs inhibit bacterial protein synthesis by inhibiting ribosomes. Furthermore, compounds in the NRI series appear to inhibit bacterial ribosomes by a new mechanism, because NRI-resistant strains are not cross-resistant to other ribosome inhibitors, such as macrolides, chloramphenicol, tetracycline, aminoglycosides, or oxazolidinones. The NRIs are a promising new antibacterial class with activity against all major drug-resistant respiratory pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Aminoacil-tRNA Sintetases/genética , Animais , Bacillus subtilis/efeitos dos fármacos , DNA Girase/genética , DNA Girase/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Escherichia coli/genética , Células Eucarióticas/metabolismo , Genes Reporter/genética , Indicadores e Reagentes , Luciferases/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Coelhos , Proteínas Ribossômicas/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Fatores de Transcrição/genética , Transcrição Gênica , beta-Galactosidase/genética
4.
J Biomol Screen ; 8(3): 273-82, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12857381

RESUMO

Microarrayed compound screening format (muARCS) is a novel high-throughput screening technology that uses agarose matrices to integrate various biochemical or biological reagents in the assay. To evaluate the feasibility of using the muARCS technology for nucleic acid polymerization assays, the authors developed HIV reverse transcription (RT) and E1-dependent human papillomavirus (HPV) replication assays in this format. HIV RT is an RNA-dependent DNA polymerase, whereas HPV E1 is a DNA helicase. To ensure the efficient capture of the nucleic acid polymerization reaction and to minimize the nonspecific binding, the authors used a SAM(2) biotin capture membrane in the assay. In both studies, the nucleic acid substrate was biotinylated on one end and was bound to the SAM(2) membrane. A low melting-point agarose gel containing the rest of the reaction components was first placed on a polystyrene sheet spotted with compounds to allow passive diffusion of the compounds into the gel. The gel was removed from the compound sheet and applied to the SAM(2) membrane with the immobilized nucleic acid template to initiate the polymerization. After the incubation, the membrane was washed with a high-salt buffer and exposed for imaging. Potential inhibitors can be seen as white spots on a dark background. The sensitivity for the known inhibitors appears to be comparable in muARCS as in a traditional 96-well plate assay. The methodology described in this paper further expands the applications of muARCS technology.


Assuntos
Biotina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Alcinos , Fármacos Anti-HIV/farmacologia , Benzoxazinas , Biotina/química , Biotinilação , Ciclopropanos , DNA/química , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/genética , Concentração Inibidora 50 , Nevirapina/farmacologia , Ácidos Nucleicos/química , Oxazinas/farmacologia , Plasmídeos/metabolismo , RNA/química , DNA Polimerase Dirigida por RNA/química , Sensibilidade e Especificidade , Moldes Genéticos
5.
J Biomol Screen ; 7(3): 259-66, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12097188

RESUMO

A novel high-throughput strand transfer assay has been developed, using Microarray Compound Screening (microARCS) technology, to identify inhibitors of human immunodeficiency virus (HIV) integrase. This technology utilizes agarose matrices to introduce a majority of the reagents throughout the assay. Integration of biotinylated donor DNA with fluorescein isothiocyanate (FITC)-labeled target DNA occurs on a SAM membrane in the presence of integrase. An anti-FITC antibody conjugated to alkaline phosphatase (AP) was used to do an enzyme-linked immunosorbent assay with the SAM. An agarose gel containing AttoPhos, a substrate of AP, was used for detection of the integrase reactions on the SAM. For detection, the AttoPhos gel was separated from the SAM after incubation and then the gel was imaged using an Eagle Eye II closed-circuit device camera system. Potential integrase inhibitors appear as dark spots on the gel image. A library of approximately 250,000 compounds was screened using this HIV integrase strand transfer assay in microARCS format. Compounds from different structural classes were identified in this assay as novel integrase inhibitors.


Assuntos
Inibidores de Integrase de HIV/análise , Integrase de HIV/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA