Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(7): 3436-3444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407460

RESUMO

BACKGROUND: Ambrosia grayi is a perennial weed native to northern Mexico, which can also be found in the Great Plains of the US. Outside the Americas, A. grayi has only been documented in Israel, where it is currently categorized as a casual species at advanced eradication stages. Here, we studied the plant biology and chemical weed management options of A. grayi. RESULTS: Only large achenes of A. grayi (~5% of all achenes) contain seeds; moreover, the viability of seeds extracted from large achenes was ~25%. Examination of plant anatomy revealed that underground vegetative segments show an anatomical structure of stems (rhizomes) with anomalous secondary growth. The optimal (night/day) temperature for the emergence of A. grayi rhizomes was 20/30 °C, and the emergence rate increased under elevated temperatures. Emergence may occur at different soil moisture content (25-60%); rhizomes were able to emerge even after 1 month of drought conditions (20%, 25% and 30%). Herbicide combinations, such as fluroxypyr + glufosinate, fluroxypyr + glyphosate, and glyphosate + saflufenacil + surfactant, were tested under quarantine conditions and showed high efficacy for the control of A. grayi. However, the efficiency of these treatments was highly correlated with plant growth stage. CONCLUSION: In Israel, the spread of A. grayi occurs mainly via rhizomes that can emerge under a wide range of temperatures and soil moisture conditions. Data regarding herbicide efficacy will aid in improving the eradication efforts taken by Israel's Plant Protection and Inspection Services. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ambrosia , Herbicidas , Controle de Plantas Daninhas , Israel , Herbicidas/farmacologia , Ambrosia/crescimento & desenvolvimento , Ambrosia/fisiologia , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Espécies Introduzidas , Sementes/crescimento & desenvolvimento
2.
Front Insect Sci ; 1: 655933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468881

RESUMO

The cockroach is an established model in the study of locomotion control. While previous work has offered important insights into the interplay among brain commands, thoracic central pattern generators, and the sensory feedback that shapes their motor output, there remains a need for a detailed description of the central pattern generators' motor output and their underlying connectivity scheme. To this end, we monitored pilocarpine-induced activity of levator and depressor motoneurons in two types of novel in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses focused on the motoneuron firing patterns and the coordination among motoneuron types in the network. The burstiness and rhythmicity of the motoneurons were monitored, and phase relations, coherence, coupling strength, and frequency-dependent variability were analyzed. These parameters were all measured and compared among network units both within each preparation and among the preparations. Here, we report differences among the isolated ganglia, including asymmetries in phase and coupling strength, which indicate that they are wired to serve different functions. We also describe the intrinsic default gait and a frequency-dependent coordination. The depressor motoneurons showed mostly similar characteristics throughout the network regardless of interganglia connectivity; whereas the characteristics of the levator motoneurons activity were mostly ganglion-dependent, and influenced by the presence of interganglia connectivity. Asymmetries were also found between the anterior and posterior homolog parts of the thoracic network, as well as between ascending and descending connections. Our analyses further discover a frequency-dependent inversion of the interganglia coordination from alternations between ipsilateral homolog oscillators to simultaneous activity. We present a detailed scheme of the network couplings, formulate coupling rules, and review a previously suggested model of connectivity in light of our new findings. Our data support the notion that the inter-hemiganglia coordination derives from the levator networks and their coupling with local depressor interneurons. Our findings also support a dominant role of the metathoracic ganglion and its ascending output in governing the anterior ganglia motor output during locomotion in the behaving animal.

3.
Biol Open ; 5(9): 1229-40, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422902

RESUMO

Cockroaches are rapid and stable runners whose gaits emerge from the intricate, and not fully resolved, interplay between endogenous oscillatory pattern-generating networks and sensory feedback that shapes their rhythmic output. Here we studied the endogenous motor output of a brainless, deafferented preparation. We monitored the pilocarpine-induced rhythmic activity of levator and depressor motor neurons in the mesothoracic and metathoracic segments in order to reveal the oscillatory networks' architecture and interactions. Data analyses included phase relations, latencies between and overlaps of rhythmic bursts, spike frequencies, and the dependence of these parameters on cycle frequency. We found that, overall, ipsilateral connections are stronger than contralateral ones. Our findings revealed asymmetries in connectivity among the different ganglia, in which meta-to-mesothoracic ascending coupling is stronger than meso-to-metathoracic descending coupling. Within-ganglion coupling between the metathoracic hemiganglia is stronger than that in the mesothoracic ganglion. We also report differences in the role and mode of operation of homologue network units (manifested by levator and depressor nerve activity). Many observed characteristics are similar to those exhibited by intact animals, suggesting a dominant role for feedforward control in cockroach locomotion. Based on these data we posit a connectivity scheme among components of the locomotion pattern generating system.

4.
J Exp Biol ; 215(Pt 11): 1884-91, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22573767

RESUMO

The relative importance of sensory input for the production of centrally generated motor patterns is crucial to our understanding of how animals coordinate their body segments to locomote. In legged locomotion, where terrain heterogeneity may require stride-by-stride changes in leg placement, evidence suggests that sensory information is essential for the timing of leg movement. In a previous study we showed that in cockroaches, renowned for rapid and stable running, a coordinated pattern can be elicited from the motor centres driving the different legs in the absence of sensory feedback. In the present paper, we assess the role of movement-related sensory inputs in modifying this central pattern. We studied the effect of spontaneous steps as well as imposed transient and periodic movements of a single intact leg, and demonstrate that, depending on the movement properties, the resulting proprioceptive feedback can significantly modify phase relationships among segmental oscillators of other legs. Our analysis suggests that feedback from front legs is weaker but more phasically precise than from hind legs, selectively transferring movement-related information in a manner that strengthens the inherent rhythmic pattern and modulates local perturbations.


Assuntos
Periplaneta/fisiologia , Animais , Extremidades/inervação , Extremidades/fisiologia , Retroalimentação Sensorial/fisiologia , Feminino , Locomoção/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Periodicidade , Desempenho Psicomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...