Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(14): e2022GL098041, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36249281

RESUMO

Mixed-phase clouds (MPCs), which consist of both supercooled cloud droplets and ice crystals, play an important role in the Earth's radiative energy budget and hydrological cycle. In particular, the fraction of ice crystals in MPCs determines their radiative effects, precipitation formation and lifetime. In order for ice crystals to form in MPCs, ice-nucleating particles (INPs) are required. However, a large-scale relationship between INPs and ice initiation in clouds has yet to be observed. By analyzing satellite observations of the typical transition temperature (T*) where MPCs become more frequent than liquid clouds, we constrain the importance of INPs in MPC formation. We find that over the Arctic and Southern Ocean, snow and sea ice cover significantly reduces T*. This indicates that the availability of INPs is essential in controlling cloud phase evolution and that local sources of INPs in the high-latitudes play a key role in the formation of MPCs.

2.
Front Microbiol ; 10: 2278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636618

RESUMO

Artificial snow production is a crucial part of modern skiing resorts in Austria and globally, and will develop even more so with changing precipitation patterns and a warming climate trend. Producing artificial snow requires major investments in energy, water, infrastructure and manpower for skiing resorts. In addition to appropriate meteorological conditions, the efficiency of artificial snow production depends on heterogeneous ice-nucleation, which can occur at temperatures as high as -2°C when induced by specific bacterial ice nucleating particles (INPs). We aimed to investigate the presence, source and ice nucleating properties of these particles in the water cycle of an alpine ski resort in Obergurgl, Tyrol, Austria. We sampled artificial snow, river water, water pumped from a storage pond and compared it to samples collected from fresh natural snow and aged piste snow from the area. Particles from each sampled system were characterized in order to determine their transport mechanisms at a ski resort. We applied a physical droplet freezing assay [DRoplet Ice Nuclei Counter Zurich (DRINCZ)] to heated and unheated samples to characterize the biological and non-biological component of IN-activity. Bacterial abundance and community structure of the samples was obtained using quantitative PCR and Illumina Mi-Seq Amplicon Sequencing, and their chemical properties were determined by liquid ion-chromatography, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show the flow of biological and inorganic material from the river to the slopes, an uptake of new microorganisms through the air and the piping, and possible proliferation or introduction of ice nucleation active biological particles in aged piste snow. Natural snow, as the first stage in this system, had the lowest amount of ice nucleation active particles and the least amount of biological and mineral particles in general, yet shares some microbial characteristics with fresh artificial snow.

3.
Proc Natl Acad Sci U S A ; 116(17): 8184-8189, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948638

RESUMO

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth's climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below -40 °C and the absence of ice nucleation below water saturation at -35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...