Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 15(9): 2351-2363, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748120

RESUMO

Iron plays a key role in microbial metabolism and bacteria have developed multiple siderophore-driven mechanisms due to its poor bioavailability for organisms in the environment. Iron-bearing minerals generally serve as a nutrient source to sustain bacterial growth after bioweathering. Siderophores are high-affinity ferric iron chelators, of which the biosynthesis is tightly regulated by the presence of iron. Pyoverdine-producing Pseudomonas have shown their ability to extract iron and magnesium from asbestos waste as nutrients. However, such bioweathering is rapidly limited due to repression of the pyoverdine pathway and the low bacterial requirement for iron. We developed a metabolically engineered strain of Pseudomonas aeruginosa for which pyoverdine production was no longer repressed by iron as a proof of concept. We compared siderophore-promoted dissolution of flocking asbestos waste by this optimized strain to that by the wild-type strain. Interestingly, pyoverdine production by the optimized strain was seven times higher in the presence of asbestos waste and the dissolution of magnesium and iron from the chrysotile fibres contained in flocking asbestos waste was significantly enhanced. This innovative mineral weathering process contributes to remove toxic iron from the asbestos fibres and may contribute to the development of an eco-friendly method to manage asbestos waste.


Assuntos
Amianto , Sideróforos , Amianto/metabolismo , Bactérias/metabolismo , Ferro/metabolismo , Magnésio/metabolismo , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
2.
J Hazard Mater ; 403: 123699, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32853889

RESUMO

Since the ban on the use of asbestos due to its carcinogenic properties, the removal of asbestos cement, representing the major asbestos-containing waste, has proven to be a challenge in most industrial countries. Asbestos-containing products are mainly disposed of in landfills and have remained untreated. Bioremediation involving bacteria previously reported the ability of Pseudomonas aeruginosa to release iron from flocking asbestos waste through a siderophore-driven mechanism. We examined the involvement of siderophore-producing Pseudomonas in the biodeterioration of asbestos cement. Iron and magnesium solubilization were evaluated by specific siderophore-producing mutants. The absence of one of the two siderophores affected iron extraction, whereas equivalent dissolution as that of the control was observed in the absence of siderophore. Both pyoverdine and pyochelin biosynthesis was repressed in the presence of asbestos cement, suggesting iron bioavailability from the waste. We compared the efficiency of various pyoverdines to scavenge iron from asbestos cement waste that revealed the efficiency of all pyoverdines. Pyoverdines were efficient in iron removal extracted continuously, with no evident extraction limit, in long-term weathering experiments with these pyoverdines. The optimization of pyoverdine-asbestos weathering may allow the development of a bioremediation process to avoid the disposal of such waste in landfills.


Assuntos
Amianto , Sideróforos , Ferro , Pseudomonas , Pseudomonas aeruginosa
3.
Microorganisms ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256219

RESUMO

Asbestos, silicate minerals present in soil and used for building constructions for many years, are highly toxic due primarily to the presence of high concentrations of the transition metal iron. Microbial weathering of asbestos occurs through various alteration mechanisms. Siderophores, complex agents specialized in metal chelation, are common mechanisms described in mineral alteration. Solubilized metals from the fiber can serve as micronutrients for telluric microorganisms. The review focuses on the bioweathering of asbestos fibers, found in soil or manufactured by humans with gypsum (asbestos flocking) or cement, by siderophore-producing Pseudomonas. A better understanding of the interactions between asbestos and bacteria will give a perspective of a detoxification process inhibiting asbestos toxicity.

4.
J Hazard Mater ; 394: 122532, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32200235

RESUMO

The use of asbestos-containing products has been banned in many countries since the beginning of the 80's due to its carcinogenic properties. However, asbestos is widely present in private and public buildings, resulting in the need to process a vast amount of asbestos-containing waste. Among the current technologies for the destruction of asbestos fibers, biodegradation by fungi, lichens, and, more recently, bacteria has been described. We previously reported the involvement of the bacterial siderophore pyoverdine in the release of iron from the two asbestos groups, serpentines and amphiboles. Among the large diversity encountered in the pyoverdine family, we examined whether these siderophores can alter flocking asbestos waste as well. All the tested pyoverdines were efficient in chrysotile-gypsum and amosite-gypsum weathering, although some exhibited higher iron dissolution. Iron was solubilized by pyoverdines from Pseudomonas aeruginosa and mandelii in a time-dependent manner from chrysotile-gypsum within 24 h. Renewal of pyoverdine-containing supernatant every 24 or 96 h allowed iron removal from chrysotile-gypsum at each cycle, until a limit was reached after 42 days of total incubation. Moreover, the dissolution was concentration-dependent, as demonstrated for the pyoverdine of P. mandelii. Pyoverdine-asbestos weathering could therefore become an innovative method to reduce anthropogenic waste.


Assuntos
Amianto Amosita/metabolismo , Asbestos Serpentinas/metabolismo , Ferro/metabolismo , Oligopeptídeos/metabolismo , Sideróforos/metabolismo , Águas Residuárias/química , Biodegradação Ambiental , Pseudomonas/metabolismo , Purificação da Água/métodos
5.
Sci Total Environ ; 709: 135936, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887510

RESUMO

Iron and magnesium are essential nutrients for most microorganisms. In the environment, the availability of iron is low relative to that of magnesium. Microorganisms have developed various iron acquisition systems, which have been well studied, whereas few studies have examined magnesium acquisition. The production of siderophores is one of the efficient strategies widely used to sustain iron nutritional requirements. Many studies have shown that minerals, such as clays, iron oxides, and silicates, can serve as nutrient sources for bacteria. Asbestos, a natural fibrous silicate present in soil contains iron and/or magnesium, depending on the species of asbestos. Our aim was to study the acquisition of iron and magnesium from flocking asbestos waste by Pseudomonas aeruginosa and the involvement of the siderophores, pyoverdine and pyochelin. Flocking asbestos waste promoted growth under iron- and magnesium-limited conditions, together with a decrease in pyoverdine production, correlating with the dissolution of iron from the waste. In long-term experiments, flocking asbestos waste provided these two essential elements for bacterial growth and resulted in a decrease of iron in asbestos fibers. Among the enzymes required for pyochelin and pyoverdine synthesis, PchA and PvdJ were tagged with the fluorescent protein mCherry to analyze the expression patterns of proteins involved in siderophore production. Both enzymes were produced in the presence of flocking asbestos waste, suggesting a role of the pyoverdine and pyochelin pathway in asbestos dissolution. We investigated the involvement of each siderophore in iron and magnesium removal using mutants in one or both siderophore pathways. We observed a significant increase in iron extraction in the presence of siderophores and the absence of one of the two siderophores could be compensated by the other. Flocking asbestos waste represents an iron and magnesium source for P. aeruginosa, with iron removal linked to a siderophore-driven mechanism.


Assuntos
Amianto , Pseudomonas aeruginosa , Ferro , Magnésio , Sideróforos
6.
J Hazard Mater ; 385: 121563, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31776083

RESUMO

Asbestos, mineral present in soil, are highly toxic due to the presence of iron. Microbes-mineral interactions occur naturally through various processes leading to their alteration. We examined the effect of siderophore-producing Pseudomonas with a particular focus on the role of pyoverdine and pyochelin on raw asbestos fibers such as amosite, crocidolite and chrysotile. We compared the efficiency of pyoverdine to the iron chelating agent EDTA in the release of iron from raw asbestos fibers. Pyoverdine was able to extract iron from all the tested raw asbestos with the higher efficiency observed for chrysotile and crocidolite. When asbestos were grinded, the iron removal was more important for all types. We monitored the effect of bacterial growth and siderophores containing bacterial supernatant on raw asbestos dissolution by solution chemistry analysis and transmission electron microscopy. The siderophore-containing supernatant allowed a higher iron solubilisation than the one obtained after bacterial growth. Moreover, the iron dissolution was faster with pyoverdine-containing supernatant than pyochelin-containing supernatant, with approximately the same iron level for the maximum extraction with a delay of 48 h. Our study clearly showed the involvement of bacterial siderophores, pyoverdine and pyochelin on chrysotile, crocidolite and amosite fibers weathering.


Assuntos
Amianto Amosita/metabolismo , Asbesto Crocidolita/metabolismo , Asbestos Serpentinas/metabolismo , Ferro/metabolismo , Pseudomonas/metabolismo , Sideróforos/metabolismo , Biofilmes , Ácido Edético/química , Ferro/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fenóis/química , Fenóis/metabolismo , Pseudomonas/fisiologia , Sideróforos/química , Tiazóis/química , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...