Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264328

RESUMO

The virus SARS-CoV-2, responsible for the global COVID-19 pandemic, spread rapidly around the world causing high morbidity and mortality because humans have no pre-existing immunity. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs) and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2.We use functional, neutralising assays to investigate cross reactive antibodies and their relationship with COVID-19 severity. We analysed neutralisation of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63.We found that although HCoV neutralisation was very common there was little evidence that these antibodies neutralised SARS-CoV-2. Despite no evidence in cross neutralisation, levels of NL63 neutralisating antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257901

RESUMO

Approximately 75% of the UK population has received only one dose of a 2-dose COVID-19 vaccine regime in the face of circulating SARS-CoV-2 Variants of Concern (VOCs). We aimed to determine the levels of vaccine-induced neutralising antibodies to SARS-CoV-2 variants B.1.1.7, B.1.351 and P.1. To do so, we undertook a single-centre cross-sectional study of health care workers (HCWs) and outpatients with immunodeficiencies (IDP) based at the same critical care tertiary NHS Trust, following a single dose of either BNT162b2 or AZD1222 vaccines. Data revealed low neutralising antibodies (nAbs) in IDPs, with only 5% and 3% showing detectable neutralisation of B.1.1.7 and B.1.351, respectively. In contrast, healthy HCWs without a prior SARS-CoV-2 infection demonstrated a wide range of nAb titres post-vaccination with responses significantly lower than HCWs with prior SARS-CoV-2 infection. Neutralisation of VOCs with the E484K mutation (B.1.351 and P.1) were consistently lower in HCWs in the absence of evidence of prior SARS-CoV-2 infection (p<0.001). Notably, in vaccinated HCWs with prior SARS-CoV-2 infection, there was a significant increase of neutralising titres post-vaccination to all variants, compared to their pre-vaccination neutralisation titres. This underscores the importance of vaccination to boost neutralising antibody breadth to VOCs, and also provides support for the hypothesis that repeated immunisations will boost protective immunity in individuals without prior SARS-CoV-2 exposure.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257729

RESUMO

BackgroundThe rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. MethodsUsing pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. FindingsOur data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold. InterpretationExpressing our data in IU/ml, we provide a benchmark pre-vaccine standardised dataset that compares disease severity with neutralising antibody titres. Our data may now be compared across multiple laboratories. The continued use and aggregation of standardised data will eventually assist in defining correlates of protection. FundingUKRI and NIHR; grant number G107217 Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDuring the first wave outbreak, much focus was placed on the role of neutralising antibodies and titres generated upon infection to ancestral SARS-CoV-2. Due to the large amounts of different assays used to elucidate the antibody-mediated immunity and laboratory to laboratory, large amounts of invaluable data could not be directly compared in order to define a correlate of protection, due to variability in the results. The WHO International Standard for anti-SARS-CoV-2 Immunoglobulin sera was made in order to standardise future data so that comparisons may take place. Added value of this studyOur study compares the neutralisation capacity of sera from patients and healthcare workers (HCWs) from the ancestral strain of SARS-CoV-2 against new variants, including the current variants of concern in circulation. We also provide data in International Units per mL, a standardised unitage, for infected individuals that have a clinical severity score, allowing us to assess levels of neutralising antibodies across different severities of COVID-19 disease. By providing a method to calibrate most of the variants of concern so that the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin reagent could be used to standardise our results, therefore making them comparable to other laboratories who also standardised their data in an identical manner. Implications of all the available evidenceContinual use and accumulation of standardised data would eventually lead to defining the correlates of protection against SARS-CoV-2. This could help to inform medical staff to identify which individuals would be a greater risk of a potential reinfection to SARS-CoV-2.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426695

RESUMO

The majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...