Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20131573

RESUMO

IntroductionSeveral viral respiratory infections - notably influenza - are associated with secondary bacterial infection and additional pathology. The extent to which this applies for COVID-19 is unknown. Accordingly, we aimed to define the bacteria causing secondary pneumonias in COVID-19 ICU patients using the FilmArray Pneumonia Panel, and to determine this tests potential in COVID-19 management. MethodsCOVID-19 ICU patients with clinically-suspected secondary infection at 5 UK hospitals were tested with the FilmArray at point of care. We collected patient demographic data and compared FilmArray results with routine culture. ResultsWe report results of 110 FilmArray tests on 94 patients (16 had 2 tests): 69 patients (73%) were male, the median age was 59 yrs; 92 were ventilated. Median hospital stay before testing was 14 days (range 1-38). Fifty-nine (54%) tests were positive, with 141 bacteria detected. Most were Enterobacterales (n=55, including Klebsiella spp. [n= 35]) or Staphylococcus aureus (n=13), as is typical of hospital and ventilator pneumonia. Community pathogens, including Haemophilus influenzae (n=8) and Streptococcus pneumoniae (n=1), were rarer. FilmArray detected one additional virus (Rhinovirus/Enterovirus) and no atypical bacteria. Fewer samples (28 % vs. 54%) were positive by routine culture, and fewer species were reported per sample; Klebsiella species remained the most prevalent pathogens. ConclusionFilmArray had a higher diagnostic yield than culture for ICU COVID-19 patients with suspected secondary pneumonias. The bacteria found mostly were Enterobacterales, S. aureus and P. aeruginosa, as in typical HAP/VAP, but with Klebsiella spp. more prominent. We found almost no viral co-infection. Turnaround from sample to results is around 1h 15 min compared with the usual 72h for culture, giving prescribers earlier data to inform antimicrobial decisions.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-095414

RESUMO

Several related human coronaviruses (HCoVs) are endemic in the human population, causing mild respiratory infections1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a recent zoonotic infection that has quickly reached pandemic proportions2,3. Zoonotic introduction of novel coronaviruses is thought to occur in the absence of pre-existing immunity in the target human population. Using diverse assays for detection of antibodies reactive with the SARS-CoV-2 spike (S) glycoprotein, we demonstrate the presence of pre-existing humoral immunity in uninfected and unexposed humans to the new coronavirus. SARS-CoV-2 S-reactive antibodies were readily detectable by a sensitive flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. These were predominantly of the IgG class and targeted the S2 subunit. In contrast, SARS-CoV-2 infection induced higher titres of SARS-CoV-2 S-reactive IgG antibodies, targeting both the S1 and S2 subunits, as well as concomitant IgM and IgA antibodies, lasting throughout the observation period of 6 weeks since symptoms onset. SARS-CoV-2-uninfected donor sera also variably reacted with SARS-CoV-2 S and nucleoprotein (N), but not with the S1 subunit or the receptor binding domain (RBD) of S on standard enzyme immunoassays. Notably, SARS-CoV-2-uninfected donor sera exhibited specific neutralising activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes, according to levels of SARS-CoV-2 S-binding IgG and with efficiencies comparable to those of COVID-19 patient sera. Distinguishing pre-existing and de novo antibody responses to SARS-CoV-2 will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...