Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Strength Cond Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38958937

RESUMO

ABSTRACT: Pairwise comparison of heavy dynamic strength and fast dynamic strength interventions on sprint performance: a systematic review and meta-analysis. J Strength Cond Res 38(8): 1509-1520, 2024-Previous studies have shown that both heavy dynamic strength (HDS) and fast dynamic strength (FDS) training can be used to improve sprint performance; however, a review and meta-analysis investigating pairwise studies that compare these two training interventions have not been performed. The aims of the study were to systematically review and analyze HDS and FDS training methodologies and evaluate their effect size difference, in pairwise comparison studies to determine and compare their effects on sprint performance. Databases were systematically searched using Boolean phrasing to identify eligible articles, and meta-analyses were performed on the extracted data. Seven studies met the inclusion criteria, which resulted in data from 138 subjects across 24 separate sprint assessments. Overall, there was a small effect in favor of FDS (standardized mean difference = 0.27, 95% confidence intervals [-0.07; 0.60], 95% prediction intervals [-1.01; 1.55]), but this was deemed not significant because of the wide-ranging prediction intervals. There is no distinguishable difference between HDS and FDS training on sprint performance. The wide-ranging prediction intervals suggest the variability is too great to determine whether one training type is more effective than the other. Practitioners should consider the individual needs of their athletes when deciding which training type to use for long-term sprint development.

2.
Sports Med ; 53(11): 2077-2093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578669

RESUMO

Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.

3.
Children (Basel) ; 10(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190001

RESUMO

The aim of this insights paper is to propose how the theory of ecological dynamics may invite re-consideration of how sport scientists could support performance, learning and development of children and youth in sports programmes. We seek to outline why learning should be individualised and contextualised, based on the specific needs of learners, such as children and youth, women and disabled athletes in sport. Case examples from individual and team sports are presented to illustrate how constraints can be designed to enrich interactions of children and youth with different performance environments, based on integrating principles of specificity and generality in learning and development. These case examples suggest how a collaborative effort by sport scientists and coaches in children and youth sport may be undertaken in a department of methodology to enrich learning and performance.

4.
J Appl Physiol (1985) ; 131(6): 1731-1749, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554017

RESUMO

Blood flow restriction (BFR) with low-load resistance exercise (RE) is often used as a surrogate to traditional high-load RE to stimulate muscular adaptations, such as hypertrophy and strength. However, it is not clear whether such adaptations are achieved through similar cellular and molecular processes. We compared changes in muscle function, morphology, and signaling pathways between these differing training protocols. Twenty-one males and females (means ± SD: 24.3 ± 3.1 yr) experienced with resistance training (4.9 ± 2.6 yr) performed 9 wk of resistance training (three times per week) with either high-loads (75%-80% 1RM; HL-RT), or low-loads with BFR (30%-40% 1RM; LL-BFR). Before and after the training intervention, resting muscle biopsies were collected, and quadricep cross-sectional area (CSA), muscular strength, and power were measured. Approximately 5 days following the intervention, the same individuals performed an additional "acute" exercise session under the same conditions, and serial muscle biopsies were collected to assess hypertrophic- and ribosomal-based signaling stimuli. Quadricep CSA increased with both LL-BFR (7.4 ± 4.3%) and HL-RT (4.6 ± 2.9%), with no significant differences between training groups (P = 0.37). Muscular strength also increased in both training groups, but with superior gains in squat 1RM occurring with HL-RT (P < 0.01). Acute phosphorylation of several key proteins involved in hypertrophy signaling pathways, and expression of ribosomal RNA transcription factors occurred to a similar degree with LL-BFR and HL-RT (all P > 0.05 for between-group comparisons). Together, these findings validate low-load resistance training with continuous BFR as an effective alternative to traditional high-load resistance training for increasing muscle hypertrophy in trained individuals.NEW & NOTEWORTHY Low-load resistance exercise with blood flow restriction (LL-BFR) is an effective method for stimulating muscular adaptations, but phenotypical and mechanistic comparisons with traditional high-load training (HL-RT) in trained populations are scarce. The findings indicate that hypertrophy, but not strength, is comparable between LL-BFR and HL-RT, and the acute cellular and molecular processes for hypertrophy were similar, but not identical, between protocols. Thus, LL-BFR is an effective alternative to HL-RT for obtaining hypertrophy in trained populations.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Exercício Físico , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético , Fluxo Sanguíneo Regional
5.
J Strength Cond Res ; 35(7): 1784-1793, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34027913

RESUMO

ABSTRACT: Davids, CJ, Raastad, T, James, L, Gajanand, T, Smith, E, Connick, M, McGorm, H, Keating, S, Coombes, JS, Peake, JM, and Roberts, LA. Similar morphological and functional training adaptations occur between continuous and intermittent blood flow restriction. J Strength Cond Res 35(7): 1784-1793, 2021-The aim of the study was to compare skeletal muscle morphological and functional outcomes after low-load resistance training using 2 differing blood flow restriction (BFR) protocols. Recreationally active men and women (n = 42 [f = 21], 24.4 ± 4.4 years) completed 21 sessions over 7 weeks of load-matched and volume-matched low-load resistance training (30% 1 repetition maximum [1RM]) with either (a) no BFR (CON), (b) continuous BFR (BFR-C, 60% arterial occlusion pressure [AOP]), or (c) intermittent BFR (BFR-I, 60% AOP). Muscle mass was assessed using peripheral quantitative computed tomography before and after training. Muscular strength, endurance, and power were determined before and after training by assessing isokinetic dynamometry, 1RM, and jump performance. Ratings of pain and effort were taken in the first and final training session. An alpha level of p < 0.05 was used to determine significance. There were no between-group differences for any of the morphological or functional variables. The muscle cross sectional area (CSA) increased pre-post training (p = 0.009; CON: 1.6%, BFR-C: 1.1%, BFR-I: 2.2%). Maximal isometric strength increased pre-post training (p < 0.001; CON: 9.6%, BFR-C: 14.3%, BFR-I: 19.3%). Total work performed during an isokinetic endurance task increased pre-post training (p < 0.001, CON: 3.6%, BFR-C: 9.6%, BFR-I: 11.3%). Perceptions of pain (p = 0.026) and effort (p = 0.033) during exercise were higher with BFR-C; however, these reduced with training (p = 0.005-0.034). Overall, these data suggest that when 30% 1RM loads are used with a frequency of 3 times per week, the addition of BFR does not confer superior morphological or functional adaptations in recreationally active individuals. Furthermore, the additional metabolic stress that is proposed to occur with a continuous BFR protocol does not seem to translate into proportionally greater training adaptations. The current findings promote the use of both intermittent BFR and low-load resistance training without BFR as suitable alternative training methods to continuous BFR. These approaches may be practically applicable for those less tolerable to pain and discomfort associated with ischemia during exercise.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...