Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(6): 4297-4310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323867

RESUMO

BACKGROUND: Cardiovascular disease is the most common cause of death worldwide, including infection and inflammation related conditions. Multiple studies have demonstrated potential advantages of hybrid positron emission tomography combined with computed tomography (PET/CT) as an adjunct to current clinical inflammatory and infectious biochemical markers. To quantitatively analyze vascular diseases at PET/CT, robust segmentation of the aorta is necessary. However, manual segmentation is extremely time-consuming and labor-intensive. PURPOSE: To investigate the feasibility and accuracy of an automated tool to segment and quantify multiple parts of the diseased aorta on unenhanced low-dose computed tomography (LDCT) as an anatomical reference for PET-assessed vascular disease. METHODS: A software pipeline was developed including automated segmentation using a 3D U-Net, calcium scoring, PET uptake quantification, background measurement, radiomics feature extraction, and 2D surface visualization of vessel wall calcium and tracer uptake distribution. To train the 3D U-Net, 352 non-contrast LDCTs from (2-[18F]FDG and Na[18F]F) PET/CTs performed in patients with various vascular pathologies with manual segmentation of the ascending aorta, aortic arch, descending aorta, and abdominal aorta were used. The last 22 consecutive scans were used as a hold-out internal test set. The remaining dataset was randomly split into training (n = 264; 80%) and validation (n = 66; 20%) sets. Further evaluation was performed on an external test set of 49 PET/CTs. The dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to assess segmentation performance. Automatically obtained calcium scores and uptake values were compared with manual scoring obtained using clinical softwares (syngo.via and Affinity Viewer) in six patient images. intraclass correlation coefficients (ICC) were calculated to validate calcium and uptake values. RESULTS: Fully automated segmentation of the aorta using a 3D U-Net was feasible in LDCT obtained from PET/CT scans. The external test set yielded a DSC of 0.867 ± 0.030 and HD of 1.0 [0.6-1.4] mm, similar to an open-source model with a DSC of 0.864 ± 0.023 and HD of 1.4 [1.0-1.8] mm. Quantification of calcium and uptake values were in excellent agreement with clinical software (ICC: 1.00 [1.00-1.00] and 0.99 [0.93-1.00] for calcium and uptake values, respectively). CONCLUSIONS: We present an automated pipeline to segment the ascending aorta, aortic arch, descending aorta, and abdominal aorta on LDCT from PET/CT and to accurately provide uptake values, calcium scores, background measurement, radiomics features, and a 2D visualization. We call this algorithm SEQUOIA (SEgmentation, QUantification, and visualizatiOn of the dIseased Aorta) and is available at https://github.com/UMCG-CVI/SEQUOIA. This model could augment the utility of aortic evaluation at PET/CT studies tremendously, irrespective of the tracer, and potentially provide fast and reliable quantification of cardiovascular diseases in clinical practice, both for primary diagnosis and disease monitoring.


Assuntos
Automação , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aorta/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Feminino , Estudos de Viabilidade , Masculino
2.
Med Phys ; 51(4): 2611-2620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37832032

RESUMO

BACKGROUND: Currently, computed tomography (CT) is used for risk profiling of (asymptomatic) individuals by calculating coronary artery calcium scores. Although this score is a strong predictor of major adverse cardiovascular events, this method has limitations. Sodium [18F]fluoride (Na[18F]F) positron emission tomography (PET) has shown promise as an early marker for atherosclerotic progression. However, evidence on Na[18F]F as a marker for high-risk plaques is limited, particularly on its presentation in clinical PET/CT. Besides, the relationship between microcalcifications visualized by Na[18F]F PET and macrocalcifications detectable on CT is unknown. PURPOSE: To establish a match/mismatch score in the aorta between macrocalcified plaque content on CT and microcalcification Na[18F]F PET uptake. METHODS: Na[18F]F-PET/CT scans acquired in our centre in 2019-2020 were retrospectively collected. The aorta of each low-dose CT was manually segmented. Background measurements were placed in the superior vena cava. The vertebrae were automatically segmented using an open-source convolutional neural network, dilated with 10 mm, and subtracted from the aortic mask. Per patient, calcium and Na[18F]F-hotspot masks were retrieved using an in-house developed algorithm. Three match/mismatch analyses were performed: a population analysis, a per slice analysis, and an overlap score. To generate a population image of calcium and Na[18F]F hotspot distribution, all aortic masks were aligned. Then, a heatmap of calcium HU and Na[18F]F-uptake on the surface was obtained by outward projection of HU and uptake values from the centerline. In each slice of the aortic wall of each patient, the calcium mass score and target-to-bloodpool ratios (TBR) were calculated within the calcium masks, in the aortic wall except the calcium masks, and in the aortic wall in slices without calcium. For the overlap score, three volumes were identified in the calcium and Na[18F]F masks: volume of PET (PET+/CT-), volume of CT (PET-/CT+), and overlapping volumes (PET+/CT+). A Spearman's correlation analysis with Bonferroni correction was performed on the population image, assessing the correlation between all HU and Na[18F]F vertex values. In the per slice analysis, a paired Wilcoxon signed-rank test was used to compare TBR values within each slice, while an ANOVA with post-hoc Kruskal-Wallis test was employed to compare TBR values between slices. p-values < 0.05 were considered significant. RESULTS: In total, 186 Na[18F]F-PET/CT scans were included. A moderate positive exponential correlation was observed between total aortic calcium mass and total aortic TBR (r = 0.68, p < 0.001). A strong positive correlation (r = 0.77, p < 0.0001) was observed between CT values and Na[18F]F values on the population image. Significantly higher TBR values were found outside calcium masks than inside calcium masks (p < 0.0001). TBR values in slices where no calcium was present, were significantly lower compared with outside calcium and inside calcium (both p < 0.0001). On average, only 3.7% of the mask volumes were overlapping. CONCLUSIONS: Na[18F]F-uptake in the aorta behaves similarly to macrocalcification detectable on CT. Na[18F]F-uptake values are also moderately correlated to calcium mass scores (match). Higher uptake values were found just outside macrocalcification masks instead of inside the macrocalcification masks (mismatch). Also, only a small percentage of the Na[18F]F-uptake volumes overlapped with the calcium volumes (mismatch).


Assuntos
Calcinose , Placa Aterosclerótica , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Cálcio , Estudos Retrospectivos , Veia Cava Superior , Aorta/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos
3.
J Imaging ; 9(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976106

RESUMO

Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleiss' (inter) and Cohen's (intra) κ and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleiss' κ values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohen's κ values between 0.37 and 0.53 for all observers, except one with a low κ of -0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...