Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 26(9): 1000-1009, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34396913

RESUMO

Conventional non-pH-sensitive liposomes for cytoplasmic delivery of protein suffer from poor efficiency. Here we investigated mannosylated pH-sensitive liposomes (MAN-PSL) for cytoplasmic delivery of protein to macrophages RAW 264.7 using PSL and non-pH-sensitive liposomes for comparison. We characterised the pH-dependent fluorescence of green fluorescent protein (GFP) and encapsulated it in liposomes as an intracellular trafficking tracer. GFP showed a reversed 'S'-shaped pH-fluorescence curve with a dramatic signal loss at acidic pH. GFP stored at 4 °C with light protection showed a half-life of 10 days (pH 5-8). The entrapment efficiency of GFP was dominated by the volume ratio of intraliposomal core to external medium for thin-film hydration. Mannosylation did not affect the pH-responsiveness of PSL. Confocal microscopy elucidated that mannosylation promoted the cellular uptake of PSL. For both these liposomes, the strongest, homogeneously distributed GFP fluorescence in the cytoplasm was found at 3 h, confirming efficient endosomal escape of GFP. Conversely, internalisation of non-pH-sensitive liposomes was slow (peaked at 12 h) and both Nile Red and GFP signals remained weak and punctuated in the cytosol. In conclusion, GFP performed as a probe for endosome escape of liposomal cargo. Mannosylation facilitated the internalisation of PSL without compromising their endosomal escape ability.


Assuntos
Citoplasma/metabolismo , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/metabolismo , Manose/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoplasma/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/síntese química , Concentração de Íons de Hidrogênio , Lipossomos , Substâncias Luminescentes/administração & dosagem , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/metabolismo , Macrófagos/efeitos dos fármacos , Manose/administração & dosagem , Manose/síntese química , Camundongos , Microscopia Confocal/métodos , Células RAW 264.7
2.
Cell Physiol Biochem ; 52(2): 156-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816665

RESUMO

BACKGROUND/AIMS: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD) worldwide, and the importance of tubular injury has been highlighted in recent years. However, the underlying mechanisms and effective therapeutic targets are still unclear. In this study, we investigated mtDNA, mitochondrial dynamics, function and metabolic pathways to determine if mitochondrial damage plays a critical role in the development of tubular injury in DKD patients. METHODS: A cross-sectional study was carried out among healthy controls (HCs, n = 65), diabetes patients without kidney disease (DCs, n = 48) and DKD patients (n = 60). Serum, peripheral blood mononuclear cells (PBMCs) and kidney biopsy specimens were obtained from participants. Metabolomics was employed to investigate cellular metabolism. RESULTS: DKD patients had decreased mtDNA copy numbers and increased mtDNA damage compared to DCs. Mitochondrial fragmentation was specifically presented in tubules, but not in podocytes of DKD patients. The accumulation of damaged mtDNA and fragmented mitochondria resulted in increased reactive oxygen species (ROS) generation, activation of apoptosis and loss of mitochondrial membrane potential (ΔΨm) in tubules and PBMCs. Furthermore, glycolysis and tricarboxylic acid (TCA) cycle was perturbed, and increased dihydroxyacetone phosphate (DHAP) and decreased succinyl-CoA synthetase (SCS) respectively in these two metabolic pathways were identified as potential biomarkers for tubular injury in DKD. CONCLUSION: Our study indicates that mitochondrial damage could be the hallmark of tubular injury in DKD patients, and this would provide a novel and attractive therapeutic target to improve this disease.


Assuntos
Nefropatias Diabéticas/metabolismo , Falência Renal Crônica/metabolismo , Túbulos Renais , Mitocôndrias/metabolismo , Estudos Transversais , DNA Mitocondrial/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Humanos , Falência Renal Crônica/patologia , Túbulos Renais/lesões , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Potencial da Membrana Mitocondrial , Metabolômica , Pessoa de Meia-Idade , Mitocôndrias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...