Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(18): 9920-9931, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005354

RESUMO

Adaptive variation among plant populations must be known for effective conservation and restoration of imperiled species and predicting their responses to a changing climate. Common-garden experiments, in which plants sourced from geographically distant populations are grown together such that genetic differences may be expressed, have provided much insight on adaptive variation. Common-garden experiments also form the foundation for climate-based seed-transfer guidelines. However, the spatial scale at which population differentiation occurs is rarely addressed, leaving a critical information gap for parameterizing seed-transfer guidelines and assessing species' climate vulnerability. We asked whether adaptation was evident among populations of a foundational perennial within a single "empirical" seed-transfer zone (based on previous common-garden findings evaluating very distant populations) but different "provisional" seed zones (groupings of areas of similar climate and are not parameterized from common-garden data). Seedlings from three populations originating from similar conditions within an intermediate elevation were planted into gardens nearby at the same elevation, or 250-450 m higher or lower in elevation and 0.4-25 km away. Substantial variation was observed between gardens in survival (ranging 2%-99%), foliar crown volume (7.8-22.6 dm3), and reproductive effort (0%-65%), but not among the three transplanted populations. The between garden variation was inversely related to climatic differences between the gardens and seed-source populations, specifically the site differences in maximum-minimum annual temperatures. Results suggest that substantial site-specificity in adaptation can occur at finer scales than is accounted for in empirical seed-transfer guidance when the guidance is derived from broadscale common-garden studies. Being within the same empirical seed zone, geographic unit, and even within 10 km distance may not qualify as "local" in the context of seed transfer. Moving forward, designing common-garden experiments so that they allow for testing the scale of adaptation will help in translating the resulting seed-transfer guidance to restoration projects.

2.
Plants (Basel) ; 8(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344913

RESUMO

The over-reliance on the herbicide glyphosate for knockdown weed control in fallows under minimum and zero-till cropping systems has led to an increase in populations of glyphosate-resistant weeds. Echinochloa colona and Chloris virgata are two major grass weeds in the cropping regions of northern New South Wales and southern Queensland, Australia, that have become harder to kill due to a steady rise in the occurrence of glyphosate-resistant weed populations. Therefore, to help growers contain these hard to kill fallow weeds, an alternate approach to glyphosate application is needed. With this purpose in mind, a pot study was carried out during the summer seasons of 2015 and 2016 at the Tamworth Agricultural Institute, Tamworth, NSW, Australia, to evaluate the efficacy of tank mixtures and sequential applications of Group H (4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor), Group C (inhibitors of photosynthesis at photosystem II), Group A (ACCase inhibitors) and Group L (photosystem I inhibitor) herbicides on late tillering E. colona and C. virgata plants. These herbicide groups are a global classification by the Herbicide Resistance Action Committee. Highly effective results were achieved in this study using combinations of Groups H, C, A and L herbicides applied as tank mixtures for controlling large E. colona plants. Additionally, sequential applications of Group H, C and A herbicides followed by (fb) paraquat were shown to be very effective on large E. colona plants. Late tillering C. virgata plants were generally well controlled by tank mixtures, and sequential applications proved to be highly effective on this grass weed as well. Haloxyfop in combination with paraquat as a tank mixture, via sequential application or as a stand-alone treatment, was highly effective for C. virgata control; however, using combinations of herbicide groups is the preferred choice when combating herbicide resistant weed populations. There was a clear synergy shown using Group H, Group C and Group A herbicides in combination with the Group L herbicide paraquat in this study for controlling advanced E. colona and C. virgata plants. These combinations were shown to be successful on plants grown under glasshouse conditions; however; these treatments would need to be tested on plants grown in a field situation to show whether they will be a useful solution for farmers who are trying to control these weeds in fallow.

3.
Mycorrhiza ; 26(6): 595-608, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27075898

RESUMO

In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant-AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p = 0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p < 0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar (13)C/(12)C isotope ratios (δ (13)C). A positive correlation between AMF colonization and δ (13)C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ (13)C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p = 0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p = 0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.


Assuntos
Artemisia/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Plântula/microbiologia , Artemisia/crescimento & desenvolvimento , Estações do Ano , Plântula/crescimento & desenvolvimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...