Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(10): 9905-13, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25300825

RESUMO

The energetic barriers that atoms and molecules often experience when binding to surfaces are incredibly important to a myriad of chemical and physical processes. However, these barriers are difficult to describe accurately with current computer simulation approaches. Two prominent contemporary challenges faced by simulation are the role of van der Waals forces and nuclear quantum effects. Here we examine the widely studied model systems of hydrogen on graphene and coronene using a van der Waals inclusive density functional theory approach together with path integral molecular dynamics at 50 K. We find that both van der Waals and quantum nuclear effects work together in a cooperative manner to dramatically reduce the barriers for hydrogen atoms to adsorb. This suggests that the low temperature hydrogenation of graphene is easier than previously thought and in more general terms that the combined roles of van der Waals and quantum tunnelling can lead to qualitative changes in adsorption.

2.
ACS Nano ; 8(5): 4827-35, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24684530

RESUMO

Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...