Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6682): 490, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301017
2.
Sci Total Environ ; 789: 148014, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34323820

RESUMO

Wetlands comprise a large expanse of the pre-disturbance landscape in the Athabasca Oil Sands Region (AOSR) and have become a focus of reclamation in recent years. An important aspect of wetland reclamation is understanding the biogeochemical functioning and carbon exchange, including methane (CH4) emissions, in the developing ecosystem. This study investigates the drivers of CH4 emissions over the first seven years of ecosystem development at a constructed fen in the AOSR and looks towards future CH4 emissions from this site. Specifically, the objectives were to: 1) investigate the environmental controls on CH4 emissions measured using manual static chambers between 2013 and 2019 and 2) investigate the relationship between water table depth, sulfate (SO42-) concentrations and CH4 emissions during the 2019 growing season. Methane emissions remained low throughout the majority of the measurement period; however, in later years, a small but significant increase became apparent. High levels of SO42- are likely the cause of the low CH4 emissions, despite the high-water tables and dominance of vegetation with aerenchyma such as Carex aquatilis and Typha latifolia in later years. Although low CH4 emissions may be beneficial from a climate warming perspective, the results also suggest that this constructed peatland is not functioning similarly to regional reference fens. Future climate scenarios across Western Boreal Canada could lead to higher air temperatures and changing precipitation patterns, influencing the direction of future CH4 emissions from this site. However, given the likelihood of this site maintaining extremely high SO42- concentrations over the next decade, it is expected that CH4 emissions will remain low.

3.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088658

RESUMO

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...