Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707835

RESUMO

Lung cancer is the worldwide leading cause of death from cancer. Epigenetic modifications such as methylation and changes in chromatin accessibility are major gene regulatory mechanisms involved in tumorigenesis and cellular lineage commitment. We aimed to characterize these processes in the context of neuroendocrine (NE) lung cancer. Illumina 450K DNA methylation data were collected for 1407 lung cancers including 27 NE tumors. NE differentially methylated regions (NE-DMRs) were identified and correlated with gene expression data for 151 lung cancers and 31 human tissue entities from the Genotype-Tissue Expression (GTEx) consortium. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed on eight lung cancer cell lines, including three NE cell lines, to identify neuroendocrine specific gene regulatory elements. We identified DMRs with methylation patterns associated with differential gene expression and an NE tumor phenotype. DMR-associated genes could further be split into six functional modules, including one highly specific gene module for NE lung cancer showing high expression in both normal and malignant brain tissue. The regulatory potential of NE-DMRs was further validated in vitro using paired ATAC- and RNA-seq and revealed both proximal and distal regulatory elements of canonical NE-marker genes such as CHGA, NCAM1, INSM1, as well as a number of novel candidate markers of NE lung cancer. Using multilevel genomic analyses of both tumor bulk tissue and lung cancer cell lines, we identified a large catalogue of gene regulatory elements related to the NE phenotype of lung cancer.

2.
Leukemia ; 32(5): 1106-1115, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29535429

RESUMO

Germline mutations in the SAMD9 and SAMD9L genes, located in tandem on chromosome 7, are associated with a clinical spectrum of disorders including the MIRAGE syndrome, ataxia-pancytopenia syndrome and myelodysplasia and leukemia syndrome with monosomy 7 syndrome. Germline gain-of-function mutations increase SAMD9 or SAMD9L's normal antiproliferative effect. This causes pancytopenia and generally restricted growth and/or specific organ hypoplasia in non-hematopoietic tissues. In blood cells, additional somatic aberrations that reverse the germline mutation's effect, and give rise to the clonal expansion of cells with reduced or no antiproliferative effect of SAMD9 or SAMD9L include complete or partial chromosome 7 loss or loss-of-function mutations in SAMD9 or SAMD9L. Furthermore, the complete or partial loss of chromosome 7q may cause myelodysplastic syndrome in these patients. SAMD9 mutations appear to associate with a more severe disease phenotype, including intrauterine growth restriction, developmental delay and hypoplasia of adrenal glands, testes, ovaries or thymus, and most reported patients died in infancy or early childhood due to infections, anemia and/or hemorrhages. SAMD9L mutations have been reported in a few families with balance problems and nystagmus due to cerebellar atrophy, and may lead to similar hematological disease as seen in SAMD9 mutation carriers, from early childhood to adult years. We review the clinical features of these syndromes, discuss the underlying biology, and interpret the genetic findings in some of the affected family members. We provide expert-based recommendations regarding diagnosis, follow-up, and treatment of mutation carriers.


Assuntos
Ataxia/genética , Mutação em Linhagem Germinativa , Síndromes Mielodisplásicas/genética , Pancitopenia/genética , Proteínas/genética , Proteínas Supressoras de Tumor/genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/genética
3.
Neurol Genet ; 3(5): e183, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28852709

RESUMO

OBJECTIVE: We describe the neurologic, neuroradiologic, and ophthalmologic phenotype of 1 Swedish and 1 Finnish family with autosomal dominant ataxia-pancytopenia (ATXPC) syndrome and SAMD9L mutations. METHODS: Members of these families with germline SAMD9L c.2956C>T, p.Arg986Cys, or c.2672T>C, p.Ile891Thr mutations underwent structured interviews and neurologic and ophthalmologic examinations. Neuroimaging was performed, and medical records were reviewed. Previous publications on SAMD9L-ATXPC were reviewed. RESULTS: Twelve individuals in both families were affected clinically. All mutation carriers examined had balance impairment, although severity was very variable. All but 1 had nystagmus, and all but 1 had pyramidal tract signs. Neurologic features were generally present from childhood on and progressed slowly. Two adult patients, who experienced increasing clumsiness, glare, and difficulties with gaze fixation, had paracentral retinal dysfunction verified by multifocal electroretinography. Brain MRI showed early, marked cerebellar atrophy in most carriers and variable cerebral periventricular white matter T2 hyperintensities. Two children were treated with hematopoietic stem cell transplantation for hematologic malignancies, and the neurologic symptoms of one of these worsened after treatment. Three affected individuals had attention deficit hyperactivity disorder or cognitive problems. Retinal dysfunction was not previously reported in individuals with ATXPC. CONCLUSIONS: The neurologic phenotype of this syndrome is defined by balance or gait impairment, nystagmus, hyperreflexia in the lower limbs and, frequently, marked cerebellar atrophy. Paracentral retinal dysfunction may contribute to glare, reading problems, and clumsiness. Timely diagnosis of ATXPC is important to address the risk for severe hemorrhage, infection, and hematologic malignancies inherent in this syndrome; regular hematologic follow-up might be beneficial.

4.
Blood ; 129(16): 2266-2279, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28202457

RESUMO

Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cisSAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34+ hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.


Assuntos
Disfunção Cognitiva/diagnóstico , Síndromes de Imunodeficiência/diagnóstico , Mutação , Síndromes Mielodisplásicas/diagnóstico , Pancitopenia/diagnóstico , Proteínas Supressoras de Tumor/genética , Adulto , Alelos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células , Criança , Cromossomos Humanos Par 7/química , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Feminino , Expressão Gênica , Hematopoese/imunologia , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Imunofenotipagem , Interferon Tipo I/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Mosaicismo , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Pancitopenia/complicações , Pancitopenia/genética , Pancitopenia/imunologia , Linhagem , Proteínas Supressoras de Tumor/metabolismo
5.
Epigenetics ; 11(3): 194-204, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26890086

RESUMO

To ascertain the epigenomic features, i.e., the methylation, non-coding RNA, and gene expression patterns, associated with gain of i(12p) in Pallister-Killian syndrome (PKS), we investigated single cell clones, harboring either disomy 12 or tetrasomy 12p, from a patient with PKS. The i(12p)-positive cells displayed a characteristic expression and methylation signature. Of all the genes on 12p, 13% were overexpressed, including the ATN1, COPS7A, and NECAP1 genes in 12p13.31, a region previously implicated in PKS. However, the median expression fold change (1.3) on 12p was lower than expected by tetrasomy 12p. Thus, partial dosage compensation occurs in cells with i(12p). The majority (89%) of the significantly deregulated genes were not situated on 12p, indicating that global perturbation of gene expression is a key pathogenetic event in PKS. Three genes-ATP6V1G1 in 9q32, GMPS in 3q25.31, and TBX5 in 12q24.21-exhibited concomitant hypermethylation and decreased expression. The i(12p)-positive cells displayed global hypomethylation of gene-poor regions on 12p, a footprint previously associated with constitutional and acquired gains of whole chromosomes as well as with X-chromosome inactivation in females. We hypothesize that this non-genic hypomethylation is associated with chromatin processing that facilitates cellular adaptation to excess genetic material.


Assuntos
Transtornos Cromossômicos/genética , Metilação de DNA/genética , Proteínas com Domínio T/genética , ATPases Vacuolares Próton-Translocadoras/genética , Cromatina/genética , Cromossomos Humanos Par 12/genética , Mecanismo Genético de Compensação de Dose , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica , Humanos , Análise de Célula Única , Proteínas com Domínio T/biossíntese , Tetrassomia/genética , ATPases Vacuolares Próton-Translocadoras/biossíntese , Inativação do Cromossomo X/genética
7.
Epigenomics ; 6(1): 45-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24579946

RESUMO

The role of structural genetic changes in human disease has received substantial attention in recent decades, but surprisingly little is known about numerical chromosomal abnormalities, even though they have been recognized since the days of Boveri as partaking in different cellular pathophysiological processes such as cancer and genomic disorders. The current knowledge of the genetic and epigenetic consequences of aneuploidy is reviewed herein, with a special focus on using mosaic genetic syndromes to study the DNA methylation footprints and expressional effects associated with whole-chromosomal gains. Recent progress in understanding the debated role of aneuploidy as a driver or passenger in malignant transformation, as well as how the cell responds to and regulates excess genetic material in experimental settings, is also discussed in detail.


Assuntos
Aneuploidia , Síndrome de Down/genética , Epigênese Genética , Neoplasias/genética , Trissomia/genética , Adaptação Biológica , Cromossomos Humanos , Cromossomos Humanos Par 8/genética , Metilação de DNA , Epigenômica , Variação Genética , Genoma Humano , Impressão Genômica , Humanos , Mosaicismo , Neoplasias/patologia
9.
Epigenetics Chromatin ; 6(1): 18, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23816241

RESUMO

BACKGROUND: To investigate epigenetic patterns associated with aneuploidy we used constitutional trisomy 8 mosaicism (CT8M) as a model, enabling analyses of single cell clones, harboring either trisomy or disomy 8, from the same patient; this circumvents any bias introduced by using cells from unrelated, healthy individuals as controls. We profiled gene and miRNA expression as well as genome-wide and promoter specific DNA methylation and hydroxymethylation patterns in trisomic and disomic fibroblasts, using microarrays and methylated DNA immunoprecipitation. RESULTS: Trisomy 8-positive fibroblasts displayed a characteristic expression and methylation phenotype distinct from disomic fibroblasts, with the majority (65%) of chromosome 8 genes in the trisomic cells being overexpressed. However, 69% of all deregulated genes and non-coding RNAs were not located on this chromosome. Pathway analysis of the deregulated genes revealed that cancer, genetic disorder, and hematopoiesis were top ranked. The trisomy 8-positive cells displayed depletion of 5-hydroxymethylcytosine and global hypomethylation of gene-poor regions on chromosome 8, thus partly mimicking the inactivated X chromosome in females. CONCLUSIONS: Trisomy 8 affects genes situated also on other chromosomes which, in cooperation with the observed chromosome 8 gene dosage effect, has an impact on the clinical features of CT8M, as demonstrated by the pathway analysis revealing key features that might explain the increased incidence of hematologic malignancies in CT8M patients. Furthermore, we hypothesize that the general depletion of hydroxymethylation and global hypomethylation of chromosome 8 may be unrelated to gene expression regulation, instead being associated with a general mechanism of chromatin processing and compartmentalization of additional chromosomes.

10.
Obesity (Silver Spring) ; 18(3): 580-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19763090

RESUMO

Small supernumerary marker chromosomes (sSMCs) derived from the near-centromeric area of chromosome 2 are very rare. In addition, duplications of the 2p11.2-->q11.2 region have displayed considerable variability between patients harboring and lacking clinical findings. Moreover, constitutional duplication of the 19q12-->q13.2 region has previously only been described in two cases and was associated with delay of developmental milestones, corpus callosum anomalies, and obesity. Herein, we present a genotype-phenotype correlation in a patient harboring two sSMCs derived from chromosomes 2 and 14 or 22, respectively. The DNA was studied using G-banding, fluorescence in situ hybridization techniques, and array-based comparative genomic hybridization. A 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(14)t(14;19)(q11;q12)del(19)(q13.31) or 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(22)t(22;19)(q11;q12)del(19)(q13.31) was detected in the patient. The sSMC 14;19 or 22;19, with its centromere originating from either chromosome 14 or 22, encompassed a 13.56 megabase (Mb) 19q derived region, harboring 263 genes, and the sSMC 2 a 2.71 Mb region including 29 genes. The patient had symptoms including a ventral septal defect, bilateral grade IV urinary reflux, corpus callosum agenesis, microphthalmia, and obesity. The 19q segment contained the genes AKT2, CEACAM1, CEBPA, LIPE, and TGFB1 which are involved in adipose tissue homeostasis and insulin resistance, and could potentially contribute to the obese phenotype observed. Array-based genetic characterization and long-term clinical evaluation with attention toward weight gain in patients with chromosome 19q duplications might in the future lead to the description of a obesity-associated genetic syndrome, something that could have implications in management and treatment of patients carrying a dup(19)(q12q13.2). Whether the der(2)(p11q11.2) contributes to the phenotype remains inconclusive.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos , Obesidade/genética , Duplicações Segmentares Genômicas , Centrômero , Pré-Escolar , Mapeamento Cromossômico/métodos , Hibridização Genômica Comparativa , DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Fenótipo , Síndrome
11.
Hum Mol Genet ; 18(21): 4054-65, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19679565

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, with high hyperdiploidy [51-67 chromosomes] and the t(12;21)(p13;q22) [ETV6/RUNX1 fusion] representing the most frequent abnormalities. Although these arise in utero, there is long latency before overt ALL, showing that additional changes are needed. Gene dysregulation through hypermethylation may be such an event; however, this has not previously been investigated in a detailed fashion. We performed genome-wide methylation profiling using bacterial artificial chromosome arrays and promoter-specific analyses of high hyperdiploid and ETV6/RUNX1-positive ALLs. In addition, global gene expression analyses were performed to identify associated expression patterns. Unsupervised cluster and principal component analyses of the chromosome-wide methylome profiles could successfully subgroup the two genetic ALL types. Analysis of all currently known promoter-specific CpG islands demonstrated that several B-cell- and neoplasia-associated genes were hypermethylated and underexpressed, indicating that aberrant methylation plays a significant leukemogenic role. Interestingly, methylation hotspots were associated with chromosome bands predicted to harbor imprinted genes and the tri-/tetrasomic chromosomes in the high hyperdiploid ALLs were less methylated than their disomic counterparts. Decreased methylation of gained chromosomes is a previously unknown phenomenon that may have ramifications not only for the pathogenesis of high hyperdiploid ALL but also for other disorders with acquired or constitutional numerical chromosome anomalies.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Caveolina 1/genética , Criança , Mapeamento Cromossômico , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Nucleofosmina , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de DNA/métodos , Tioléster Hidrolases , Proteínas Supressoras de Tumor/genética , Proteína de Morte Celular Associada a bcl/genética
13.
Br J Haematol ; 144(4): 546-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19055661

RESUMO

The t(X;7)(q22;q34), a translocation not previously reported in a neoplastic disorder, was identified and molecularly characterised in a paediatric T-cell acute lymphoblastic leukaemia (T-ALL), subsequently shown also to harbour a deletion of 6q, a STIL/TAL1 fusion and an activating NOTCH1 mutation. The t(X;7) was further investigated using fluorescence in situ hybridisation (FISH), real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot analyses. FISH revealed a breakpoint at the T-cell receptor beta locus at 7q34 and mapped the corresponding breakpoint to Xq22.3. The latter region contains only two known genes, namely insulin receptor substrate 4 (IRS4) and collagen, type IV, alpha 5 (COL4A5), the expressions of which were analysed by the use of RQ-PCR. COL4A5 was not differentially expressed in the t(X;7)-positive sample compared to five T-ALL controls. However, a marked, 1000-fold overexpression of IRS4 was identified. Western blot analysis with a monoclonal antibody against IRS4 showed overexpression also at the protein level. Considering that forced expression of several members of the IRS family has been shown to result in increased cell proliferation, for example in haematopoietic cells, we hypothesise that the IRS4 up-regulation in T-ALL is pathogenetically important as a mitogenic stimulus.


Assuntos
Cromossomos Humanos Par 7/genética , Cromossomos Humanos X/genética , Proteínas Substratos do Receptor de Insulina/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Translocação Genética , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Proteínas Substratos do Receptor de Insulina/biossíntese , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Regulação para Cima
14.
Epilepsy Res ; 81(1): 69-79, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18539002

RESUMO

PURPOSE: To characterize a deletion of chromosome 2q at the molecular level in a patient suffering from severe epilepsy resembling severe myoclonic epilepsy of infancy/Dravet's syndrome (SMEI/DS) and to correlate other cases harboring deletions in the same region to morphological and clinical data. METHODS: Array-based comparative genomic hybridization (array CGH) was performed on DNA from the patient. Forty-three previously published cases reporting deletions within region 2q21-q31 were collected and analyzed regarding their cytogenetic and clinical data. RESULTS: A del(2)(q24.3q31.1) was detected in the patient, spanning a 10.4-megabase (Mb) region between 165.18 and 175.58Mb, harboring 47 genes. FISH analysis was performed, confirming this deletion. Twenty-two of the 43 previously published cases were seizure-positive. The most common dysmorphic features were ear abnormalities, microcephaly, micrognathia and brachysyndactyly for all patients as well as for solely the seizure-positive and -negative ones. For the 22 seizure-positive cases chromosome subband 2q24.3 constituted the smallest commonly deleted region among the majority of the cases, where subbands 2q22.1 and 2q33.3 represented the most proximal and distal breakpoint, respectively. CONCLUSIONS: Based on the early age of presentation and the severity of the epilepsy reported for the majority of the seizure-positive cases it was concluded that SMEI/DS could be the epileptic encephalopathy associated with deletions within the 2q22.1-q33.3 region, due to haploinsuffiency of SCN1A and/or complete or partial deletion of other voltage-gated sodium channel genes caused by the aberration. Furthermore, our study supports that array CGH is a competent technique for screening SCN1A mutation-negative patients diagnosed with SMEI/DS-like epilepsies and dysmorphic features, generating rapid and high-resolution data of genomic imbalances present in the patients.


Assuntos
Deleção de Genes , Epilepsia Mioclônica Juvenil/genética , Canais de Sódio/genética , Desequilíbrio Alélico , DNA/genética , Feminino , Citometria de Fluxo , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Recém-Nascido , Cariotipagem , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
15.
BMC Med Genet ; 9: 2, 2008 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-18194513

RESUMO

BACKGROUND: Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. METHODS: In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k) genome-wide array-based comparative genomic hybridization (CGH). RESULTS: After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb) region, ranging from 93.86-100.34 Mb on chromosome 15. CONCLUSION: In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 15 , Deficiências do Desenvolvimento/genética , Transtornos do Crescimento/genética , Cardiopatias Congênitas/genética , Adulto , Bandeamento Cromossômico , Coloração Cromossômica , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Cariotipagem , Masculino , Metáfase , Síndrome
16.
Hum Mol Genet ; 16(18): 2215-25, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17613536

RESUMO

Although gain of 1q occurs in 25% of Burkitt lymphomas (BLs) and 10% of pediatric high hyperdiploid acute lymphoblastic leukemias (ALLs), little is known about the origin, molecular genetic characteristics and functional outcome of dup(1q) in these disorders. Ten dup(1q)-positive BLs/ALLs were investigated by tiling resolution (32k) array CGH analysis, which revealed that the proximal breakpoints in all cases were near-centromeric, in eight of them clustering within a 1.4 Mb segment in 1q12-21.1. The 1q distal breakpoints were heterogeneous, being more distal in the ALLs than in the BLs. The minimally gained segments in the ALLs and BLs were 57.4 Mb [dup(1)(q22q32.3)] and 35 Mb [dup(1)(q12q25.2)], respectively. Satellite II DNA on 1q was not hypomethylated, as ascertained by Southern blot analyses of 15 BLs/ALLs with and without gain of 1q, indicating that aberrant methylation was not involved in the origin of dup(1q), as previously suggested for other neoplasms with 1q rearrangements. Global gene expression analyses revealed that five genes in the minimally 57.4 Mb gained region--B4GALT3, DAP3, RGS16, TMEM183A and UCK2--were significantly overexpressed in dup(1q)-positive ALLs compared with high hyperdiploid ALLs without dup(1q). The DAP3 and UCK2 genes were among the most overexpressed genes in the BL case with gain of 1q investigated. The DAP3 protein has been reported to be highly expressed in invasive glioblastoma multiforme cells, whereas expression of the UCK2 protein has been correlated with sensitivity to anticancer drugs. However, involvement of these genes in dup(1q)-positive ALLs and BLs has previously not been reported.


Assuntos
Linfoma de Burkitt/genética , Centrômero/genética , Cromossomos Humanos Par 1/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , Linfoma de Burkitt/metabolismo , Centrômero/metabolismo , Criança , Pré-Escolar , Cromossomos Humanos Par 1/metabolismo , Diploide , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
19.
Cancer Genet Cytogenet ; 163(2): 180-3, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16337865

RESUMO

Several different investigations and methodologies have provided data supporting a monoclonal origin of neoplasia. For example, the vast majority of neoplastic disorders are cytogenetically monoclonal. Occasionally, however, clones with unrelated karyotypic anomalies are found, as, for example, in approximately 2% of acute myeloid leukemias (AML), myelodysplastic syndromes (MDS), and chronic myeloproliferative disorders (CMD). Whether such a cytogenetic polyclonality represents a polyclonal origin or whether different clones share a submicroscopic primary change, indicating a monoclonal origin, remains to be elucidated. Our objective was to ascertain if cryptic aberrations can be found in cytogenetically polyclonal hematologic malignancies using multicolor fluorescence in situ hybridization (M-FISH). Fourteen AML, MDS, and CMD cases were investigated. In none of these was a cryptic aberration found, common to all subclones, although the karyotypes were revised in two AMLs and one MDS. Thus, all malignancies were still classified as polyclonal after the M-FISH analyses. Based on the present results, we conclude that M-FISH, in general, does not reveal primary cryptic aberrations supporting a monoclonal origin of cytogenetically polyclonal hematologic malignancies.


Assuntos
Neoplasias Hematológicas/genética , Hibridização in Situ Fluorescente/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...