Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112864, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494182

RESUMO

Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts. Nevertheless, in the absence of these conjugates, CD8 lymphocyte proliferation and differentiation into functional cytotoxic T cells (CTLs) and skin homing effector lymphocytes takes place normally. Our results suggest that although CD8 T cell blasts engage in tight ICAM-1-dependent DC-T ISs, firm ISs are dispensable for TCR-triggered proliferation and differentiation into productive effector lymphocytes.


Assuntos
Células Dendríticas , Molécula 1 de Adesão Intercelular , Molécula 1 de Adesão Intercelular/metabolismo , Células Dendríticas/metabolismo , Linfócitos T CD8-Positivos , Ativação Linfocitária , Antígenos/metabolismo , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35182483

RESUMO

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Assuntos
Infecções Bacterianas , Listeriose , Linfócitos B , Centro Germinativo , Humanos , Monócitos
3.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31873727

RESUMO

Germinal centers (GCs) are sites at which B cells proliferate and mutate their antibody-encoding genes in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). B cell antigen receptor (BCR) signals induce Syk activation followed by rapid phosphatase-mediated desensitization; however, how degradation events regulate BCR functions in GCs is unclear. Here, we found that Syk degradation restrains plasma cell (PC) formation in GCs and promotes B cell LZ to DZ transition. Using a mouse model defective in Cbl-mediated Syk degradation, we demonstrate that this machinery attenuates BCR signaling intensity by mitigating the Kras/Erk and PI3K/Foxo1 pathways, and restricting the expression of PC transcription factors in GC B cells. Inhibition of Syk degradation perturbed gene expression, specifically in the LZ, and enhanced the generation of PCs without affecting B cell proliferation. These findings reveal how long-lasting attenuation of signal transduction by degradation events regulates cell fate within specialized microanatomical sites.


Assuntos
Centro Germinativo/metabolismo , Plasmócitos/metabolismo , Quinase Syk/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Proliferação de Células/fisiologia , Expressão Gênica/fisiologia , Centro Germinativo/fisiologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia
4.
J Exp Med ; 216(11): 2515-2530, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31492809

RESUMO

Germinal centers (GCs) are sites wherein B cells proliferate and mutate their immunoglobulins in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). Here, we mapped the location of single B cells in the context of intact lymph nodes (LNs) throughout the GC response, and examined the role of BCR affinity in dictating their position. Imaging of entire GC structures and proximal single cells by light-sheet fluorescence microscopy revealed that individual B cells that previously expressed AID are located within the LN cortex, in an area close to the GC LZ. Using in situ photoactivation, we demonstrated that B cells migrate from the LZ toward the GC outskirts, while DZ B cells are confined to the GC. B cells expressing very-low-affinity BCRs formed GCs but were unable to efficiently disperse within the follicles. Our findings reveal that BCR affinity regulates B cell positioning during the GC response.


Assuntos
Linfócitos B/metabolismo , Proliferação de Células , Centro Germinativo/metabolismo , Linfonodos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Linfócitos B/citologia , Movimento Celular , Centro Germinativo/citologia , Linfonodos/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência
5.
Immunol Rev ; 288(1): 37-48, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30874355

RESUMO

Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Modelos Imunológicos , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos/imunologia , Diferenciação Celular , Humanos , Imunidade Humoral , Molécula 1 de Adesão Intercelular/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
6.
Cell Chem Biol ; 26(1): 98-108.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30449673

RESUMO

The c-Jun NH2-terminal kinase (JNK) signaling pathway is central to the cell response to stress, inflammatory signals, and toxins. While selective inhibitors are known for JNKs and for various upstream MAP3Ks, no selective inhibitor is reported for MKK7--one of two direct MAP2Ks that activate JNK. Here, using covalent virtual screening, we identify selective MKK7 covalent inhibitors. We optimized these compounds to low-micromolar inhibitors of JNK phosphorylation in cells. The crystal structure of a lead compound bound to MKK7 demonstrated that the binding mode was correctly predicted by docking. We asserted the selectivity of our inhibitors on a proteomic level and against a panel of 76 kinases, and validated an on-target effect using knockout cell lines. Lastly, we show that the inhibitors block activation of primary mouse B cells by lipopolysaccharide. These MKK7 tool compounds will enable better investigation of JNK signaling and may serve as starting points for therapeutics.


Assuntos
MAP Quinase Quinase 7/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...