Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727389

RESUMO

In a typical semiconductor material, the majority of the heat is carried by long-wavelength, long-mean-free-path phonons. Nanostructuring strategies to reduce thermal conductivity, a promising direction in the field of thermoelectrics, place scattering centers of size and spatial separation comparable to the mean free paths of the dominant phonons to selectively scatter them. The resultant thermal conductivity is in most cases well predicted using Matthiessen's rule. In general, however, long-wavelength phonons are not as effectively scattered as the rest of the phonon spectrum. In this work, using large-scale molecular-dynamics simulations, non-equilibrium Green's function simulations, and Monte Carlo simulations, we show that specific nanoporous geometries that create narrow constrictions in the passage of phonons lead to anticorrelated heat currents in the phonon spectrum. This effect results in super-suppression of long-wavelength phonons due to heat trapping and reductions in the thermal conductivity to values well below those predicted by Matthiessen's rule.

2.
Phys Chem Chem Phys ; 25(45): 31090-31097, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947045

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) exhibit characteristics ideal for membrane applications, such as high stability, tunability and porosity along with well-ordered nanopores. However, one of the many challenges with fabricating these materials into membranes is that membrane wetting can result in layer swelling. This allows molecules that would be excluded based on pore size to flow around the layers of the COF, resulting in reduced separation. Cross-linking between these layers inhibits swelling to improve the selectivity of these membranes. In this work, computational models were generated for a quinoxaline-based COF cross-linked with oxalyl chloride (OC) and hexafluoroglutaryl chloride (HFG). Enthalpy of formation and cohesive energy calculations from these models show that formation of these COFs is thermodynamically favorable and the resulting materials are stable. The cross-linked COF with HFG was synthesized and characterized with Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-DSC), and water contact angles. Additionally, these frameworks were fabricated into membranes for permeance testing. The experimental data supports the presence of cross-linking and demonstrates that varying the amount of HFG used in the reaction does not change the amount of cross-linking present. Computational models indicate that varying the cross-linking concentration has a negligible effect on stability and less cross-linking still results in stable materials. This work sheds light on the nature of the cross-linking in these 2D-COFs and their application in membrane technologies.

3.
Front Plant Sci ; 14: 1101547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875583

RESUMO

Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa's total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...