Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930601

RESUMO

When animals perceive an acute stressor like a predator, they typically undergo a suite of physiological changes that function to improve survival during the encounter, such as elevation in cardiac output, to supply more energy to muscles. If bodily energy is limited, such as by parasites or infections, these functions could become less efficient and lessen host survival. In the aquatic world of microorganisms, individuals can become colonized by other organisms on their surface (epibionts), which could sap energy from their host from their weight, or even compete with the host for food. Here, we tested if one epibiont (a ciliated protozoan, Vorticella spp.) affects its hosts' ability to mount a physiological stress reaction. We collected wild daphnia (Daphnia ambigua) that had varying burdens of these on their bodies and exposed them to a simulated stressor (crushed daphnia, to simulate nearby predation) under a microscope while monitoring for changes in their heart rates in real time. Out of 121 daphnia, those with no Vorticella epibionts showed no meaningful changes in their heart rate after exposure, but those with light or heavy burdens showed immediate elevations (within 5 min). Moreover, the heart rates of heavily burdened daphnia continued to rise for 1.5 h thereafter, to as much as 17% higher than at baseline. These patterns were unexpected, as they suggest that the ciliated epibionts act to elevate their hosts' physiological reaction, rather than dampen it, perhaps by churning the water column around the host, thereby enhancing the chemical alarm cue. The procedures used in this study may be useful for future investigations into the acute stress reactions of daphnia or other microorganisms.

2.
Insects ; 15(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786865

RESUMO

An invasive spider from East Asia has established in the U.S. southeast (the "joro spider," Trichonephila clavata) and is rapidly expanding its range. Studies assessing the impact of this species are needed, including how expansive its diet is. An open question is whether monarch butterflies, Danaus plexippus, are a potential prey item for this spider, given that joro spiders do not coexist with monarchs in their native range. Since monarch larvae feed on milkweed, they sequester cardiac glycosides into their adult tissues, rendering them unpalatable to many predators. At sites within northeast Georgia, we staged a series of trials (n = 61) where we tossed monarchs into joro spider webs and, for comparison, performed similar trials with another aposematic species, gulf fritillary (Agraulis vanilla), and a palatable species, tiger swallowtail (Papilio glaucus). We recorded the outcome of the trials, which included whether the spider attacked or did not attack the prey. We also conducted a visual survey during the same fall season to look for evidence of joro spiders consuming monarchs naturally. Our findings revealed that joro spiders avoided eating monarchs; spiders only attacked monarchs 20% of the time, which was significantly less than the attack rates of similarly sized or larger butterflies: 86% for gulf fritillaries and 58% for tiger swallowtails. Some joro spiders even removed monarchs from their webs. From our visual surveys of the surrounding area, we found no evidence of natural monarch consumption and, in general, butterflies made up only a fraction of the joro spider diet. We conclude that joro spiders appear to recognize monarch butterflies as being unpalatable, even without having a prior history with the species. This invokes questions about how these spiders can immediately recognize their unpalatability without touching the butterflies.

3.
Conserv Physiol ; 12(1): coad101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293638

RESUMO

Amphibian declines are a global phenomenon but responses of populations to specific threats are often context dependent and mediated by individual physiological condition. Habitat degradation due to reduced riparian forest cover and parasitism are two threats facing the hellbender salamander (Cryptobranchus alleganiensis), but their potential to interact in nature remains largely unexplored. We investigated associations between forest cover, parasitic infection and physiology of hellbenders to test the hypotheses that physiological condition responds to infection and/or habitat degradation. We sampled 17 stream reaches in southwest Virginia, USA, on a year-round basis from 2013 to 2016 and recorded 841 captures of 405 unique hellbenders. At each capture we documented prevalence of two blood-associated parasites (a leech and trypanosome) and quantified up to three physiological condition indices (body condition, hematocrit, white blood cell [WBC] differentials). We used generalized linear mixed models to describe spatiotemporal variation in parasitic infection and each condition index. In general, living in the most heavily forested stream reaches, where hellbender density was highest, was associated with the greatest risk of parasitism, elevated neutrophil-to-lymphocyte (N:L) ratios and eosinophils, slightly lower hematocrit and lower mean body condition in hellbenders. All condition indices fluctuated temporally in a manner consistent with seasonal variation in hellbender metabolic demands and breeding phenology and were associated with land use during at least part of the year. Paradoxically, relatively low levels of forest cover appeared to confer a potential advantage to individuals in the form of release from parasites and improved body condition. Despite improved body condition, individuals from less forested areas failed to exhibit fluctuating body condition in response to spawning, which was typical in hellbenders from more forested habitats. We postulate this lack of fluctuation could be due to reduced conspecific competition or reproductive investment and/or high rates of filial cannibalism in response to declining forest cover.

4.
PLoS One ; 18(6): e0286921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37343011

RESUMO

Elucidating the adaptations that promote flight in animals can aid the understanding of evolution and species divergence, and/or provide inspiration for aerospace engineering and the design of better aerial vehicles. The famed long-distance migration of monarch butterflies in North America still holds many questions and opportunities for inspiration. For example, there is little research on whether the monarch's primary wing colors themselves (black, orange, or white) have any aerodynamic or migration function. Dark colors on wings of other animals have recently been shown to aid flight by enhancing solar absorption, which reduces drag forces. However, too much black surface could be problematic for monarchs, which are exposed to increasing amounts of solar energy along their flightpath. This paper describes the results of two related investigations that attempt to elucidate the importance of wing color to the monarch migration. By measuring the color proportions of nearly 400 monarch wings collected at different stages of their journey, we found, surprisingly, that successful migrants tended to have less black on their wings (about 3% less), but also more white pigment (about 3% more); monarchs have a band of light-colored marginal wing spots. Second, image analysis of museum specimens revealed migratory monarchs had significantly larger white spots, proportional to the wing area, than most non-migratory, New World Danaid butterflies, which argues spot size has evolved along with migratory behavior. Combined, these findings strongly suggest that the long-distance migration itself selects for larger white spots every fall, so that only those individuals with large spots will survive to pass on their genes. Further experimental work is needed to elucidate how the spots aid the migration, but it is possible that they enhance aerodynamic efficiency; other work by the authors demonstrates how alternating white and black pigment on wings can reduce drag. These results will serve as a useful starting point for such endeavors, which should improve understanding of one of the world's most fascinating animal migrations, and also provide practical knowledge for the field of aerospace engineering.


Assuntos
Borboletas , Animais , Borboletas/genética , América do Norte , Migração Animal , Asas de Animais
5.
PLoS One ; 18(3): e0281149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36917578

RESUMO

Some animals react to predation threats or other stressors by adopting a freezing posture in an attempt to avoid detection, and the duration of this behavior usually corresponds with individual personality, such that timid individuals freeze longer. Despite decades of research on this or related behaviors (thanatosis), never has the impact of parasitism been considered. Parasites could prolong the duration, if hosts are less motivated to move (i.e. lethargic), or they could reduce it, if hosts are motivated to forage more to compensate for energy drain. We examined this behavior within a natural beetle-nematode system, where hosts (horned passalus beetles, Odontotaenius disjunctus) are parasitized by a nematode, Chondronema passali. We exposed beetles (n = 238) to four stressors in our lab, including noise, vibration, light and inversion, and recorded how long they adopt a frozen stance. Afterward, we determined nematode burdens, which can range from dozens to hundreds of worms. Beetles tended to freeze for 20 seconds on average, with some variation between stressors. We detected no effect of beetle mass on the duration of freezing, and this behavior did not differ in beetles collected during the breeding or non-breeding season. There was a surprising sex-based difference in the impact of nematodes; unparasitized females remained frozen twice as long as unparasitized males, but for beetles with heavy nematode burdens, the opposite was true. From this we infer that heavily parasitized females are more bold, while males with heavy burdens would be more timid. The explanation for this finding remains elusive, though we can rule out many possibilities based on prior work on this host-parasite system.


Assuntos
Besouros , Nematoides , Parasitos , Animais , Feminino , Masculino , Besouros/parasitologia , Congelamento , Personalidade , Interações Hospedeiro-Parasita
6.
Methods Mol Biol ; 2562: 443-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272093

RESUMO

Assessing numbers of leukocytes in salamanders and other amphibians can be useful metrics for understanding health or stress levels of individuals in a population. In this chapter we describe the procedures for obtaining blood samples from amphibians, preparing blood films for microscopy, counting, and identifying cells. We also provide reference values for amphibian leukocytes for use in interpreting leukocyte data. From our assessment of the published and unpublished literature, "non-stressed" salamanders would have a leukocyte profile where 60-70% of cells are lymphocytes, 17-30% are neutrophils, 1-4% are eosinophils, 4-12% are basophils, and 2-6% are monocytes. In Ambystoma spp., the eosinophil abundance can be notably higher (30% of all white blood cells), for reasons unknown. Finally, the neutrophil-lymphocyte ratio of most non-stressed salamanders tends to be between 0.3 and 0.4 (sometimes less), while the ratios of stressed salamanders tend to be over 1.0.


Assuntos
Leucócitos , Urodelos , Animais , Humanos , Contagem de Leucócitos , Ambystoma , Neutrófilos , Anfíbios , Eosinófilos
7.
J Therm Biol ; 110: 103374, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462869

RESUMO

Monarch butterflies in North America have an exceptionally large breeding distribution, occupying regions west of the Rocky Mountains and throughout the eastern seaboard. An experimental study conducted 17 years ago and published in this journal appeared to show that western monarch larvae tend to have smaller black stripes than those from eastern parents, which at the time was thought to be an adaptation to higher solar exposure in California. Here, we revisit this question by measuring melanism of eastern and western larvae from online photographs submitted to iNaturalist by members of the public. We downloaded over 500 photos of larvae from 10 different states (4 in the west, 6 in the east) and used image analysis to quantify the size of each larva's black stripes (% of surface covered by black). We compared average melanism level between east and west, while also accounting for temperature (at the photo location), seasonal effects, and latitude. Results showed larvae tended to be darker with lower development temperatures, and later in the season, though there was no significant difference between eastern and western larvae in their degree of melanism. It is not yet clear why findings here were different from the prior experimental study. Also, the wild larvae appeared to be notably lighter in color than the captive-reared larvae of the original study, suggesting that the captive environment does not truly replicate the developmental experience of wild larvae, at least in terms of cuticular development. Thus, if there truly are innate tendencies for western larvae to differ (morphologically) from eastern, they are not observable in nature.


Assuntos
Borboletas , Melanose , Animais , Larva , América do Norte , Aclimatação
8.
Insects ; 13(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421952

RESUMO

An invasive spider (Trichonephila clavata [L. Koch 1878], or joro spider) is rapidly expanding throughout the southeast of the United States, engendering many questions about how native fauna will be affected. Here, we describe an observation of a northern cardinal (Cardinalis cardinalis, L.) consuming prey items from a joro web, which serves as an example of a native species deriving a (small) benefit from this new invader. Moreover, the manner of the kleptoparasitism is also noteworthy; the cardinal perched directly on the web, which supported its weight (which is 42-48 g in this species). This appears to be the first documented case of a spider web supporting a perching bird. We also include measurements of other joro webs, where web strength had been assessed using a force gauge, which revealed that typical webs can support masses up to 70 g before collapsing. Collectively, this information adds to the small but growing body of knowledge about the biology of this non-native spider.

9.
Glob Chang Biol ; 28(15): 4726-4735, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686571

RESUMO

Many insects are in clear decline, with monarch butterflies (Danaus plexippus) drawing particular attention as a flagship species. It is well documented that, among migratory populations, numbers of overwintering monarchs have been falling across several decades, but trends among breeding monarchs are less clear. Here, we compile >135,000 monarch observations between 1993 and 2018 from the North American Butterfly Association's annual butterfly count to examine spatiotemporal patterns and potential drivers of adult monarch relative abundance trends across the entire breeding range in eastern and western North America. While the data revealed declines at some sites, particularly the US Northeast and parts of the Midwest, numbers in other areas, notably the US Southeast and Northwest, were unchanged or increasing, yielding a slightly positive overall trend across the species range. Negative impacts of agricultural glyphosate use appeared to be counterbalanced by positive effects of annual temperature, particularly in the US Midwest. Overall, our results suggest that population growth in summer is compensating for losses during the winter and that changing environmental variables have offsetting effects on mortality and/or reproduction. We suggest that density-dependent reproductive compensation when lower numbers arrive each spring is currently able to maintain relatively stable breeding monarch numbers. However, we caution against complacency since accelerating climate change may bring growing threats. In addition, increases of summer monarchs in some regions, especially in California and in the south, may reflect replacement of migratory with resident populations. Nonetheless, it is perhaps reassuring that ubiquitous downward trends in summer monarch abundance are not evident.


Assuntos
Borboletas , Migração Animal , Animais , América do Norte , Dinâmica Populacional , Estações do Ano
10.
J Anim Ecol ; 91(4): 780-793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174493

RESUMO

Insect-pathogen dynamics can show seasonal and inter-annual variations that covary with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies Danaus plexippus are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.


Assuntos
Borboletas , Parasitos , Migração Animal , Animais , Borboletas/parasitologia , México , Melhoramento Vegetal , Estações do Ano , Estados Unidos
11.
Insects ; 13(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055906

RESUMO

A recent study in this journal aimed to understand certain changes in the wintering behavior of monarch butterflies, specifically in the western subpopulation of North America [...].

12.
Insects ; 12(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34821799

RESUMO

Neonicotinoids are the most widely used insecticides in North America. Numerous studies document the negative effects of neonicotinoids on bees, and it remains crucial to demonstrate if neonicotinoids affect other non-target insects, such as butterflies. Here we examine how two neonicotinoids (imidacloprid and clothianidin) affect the development, survival, and flight of monarch butterflies, and how these chemicals interact with the monarch's milkweed host plant. We first fed caterpillars field-relevant low doses (0.075 and 0.225 ng/g) of neonicotinoids applied to milkweed leaves (Asclepias incarnata), and found no significant reductions in larval development rate, pre-adult survival, or adult flight performance. We next fed larvae higher neonicotinoid doses (4-70 ng/g) and reared them on milkweed species known to produce low, moderate, or high levels of secondary toxins (cardenolides). Monarchs exposed to the highest dose of clothianidin (51-70 ng/g) experienced pupal deformity, low survival to eclosion, smaller body size, and weaker adult grip strength. This effect was most evident for monarchs reared on the lowest cardenolide milkweed (A. incarnata), whereas monarchs reared on the high-cardenolide A. curassavica showed no significant reductions in any variable measured. Our results indicate that monarchs are tolerant to low doses of neonicotinoid, and that negative impacts of neonicotinoids depend on host plant type. Plant toxins may confer protective effects or leaf physical properties may affect chemical retention. Although neonicotinoid residues are ubiquitous on milkweeds in agricultural and ornamental settings, commonly encountered doses below 50 ng/g are unlikely to cause substantial declines in monarch survival or migratory performance.

14.
Herpetologica ; 77(1): 45-55, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356092

RESUMO

Diamond-backed Terrapins inhabit coastal salt marshes along the eastern and Gulf coasts of North America. Terrapins are adapted to intermediate salinities yet frequently face saltwater-inundated marsh habitat exceeding 25 ppt (or grams/kilogram). We investigated the effect of salinity on the growth of hatchling terrapins and on their compensatory responses to salinity stress. We randomly assigned 30 terrapin hatchlings each to one of five salinity treatments (1, 5, 10, 20, or 35 ppt). Over 75 d, we regularly monitored behavior, appetite, and changes in growth; and calculated ratios of heterophils to lymphocytes (H:L ratio) to assess responses to prolonged salinity stress. Consistent with prior studies, chronic exposure to high salinity significantly reduced hatchling growth. Hatchlings in 20-ppt and 35-ppt salinities exhibited appetite suppression and saltwater avoidance and were more likely to show freshwater-seeking behaviors. H:L ratios were higher among hatchlings in 20-and 35-ppt salinities, consistent with a corticosterone-driven stress response to sustained high-salinity exposure, which may play a role in limiting growth. Our findings suggest hatchling growth and distribution among local habitats will vary spatially depending on habitat salinity and freshwater accessibility. The growth-limiting effects of chronically high salinity or limited access to freshwater could therefore increase hatchling mortality and be an important driver of spatial variation in terrapin demography and abundance. However, when freshwater sources are available, compensatory behaviors might reduce growth-limiting effects. Terrapin recruitment is likely to be impacted as rising sea levels, increased human water use, land development, and other anthropogenic changes alter freshwater inputs to coastal marshes.

15.
Biol Lett ; 16(4): 20190922, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264783

RESUMO

For many animals and insects that are experiencing dramatic population declines, the only recourse for conservationists is captive rearing. To ensure success, reared individuals should be biologically indistinct from those in the wild. We tested if this is true with monarch butterflies, Danaus plexippus, which are increasingly being reared for release by citizens and commercial breeders. Since late-summer monarchs should be as migration capable as possible for surviving the arduous long-distance migration, we evaluated four migration-relevant traits across two groups of captive-reared monarchs (n = 41 and 42) and one group of wild-caught migrants (n = 41). Monarchs (descendants of wild individuals) were reared from eggs to adulthood either in a warm indoor room next to a window, or in an incubator that mimicked late-summer conditions. Using an apparatus consisting of a perch mounted to an electronic force gauge, we assessed 'grip strength' of all groups, then used image analysis to measure forewing size, pigmentation and elongation. In three of the four traits, reared monarchs underperformed compared to wild ones, even those reared under conditions that should have produced migration-ready individuals. The average strength of reared monarchs combined was 56% less than the wild group, even when accounting for size. Their orange wing colour was paler (an indicator of poor condition and flight ability) and their forewings were less elongated (elongation is associated with migration propensity) than wild monarchs. The reason(s) behind these effects is unknown but could stem from the frequent disturbance and/or handling of reared monarchs, or the fact that rearing removes the element of natural selection from all stages. Regardless, these results explain prior tagging studies that showed reared monarchs have lower migratory success compared to wild.


Assuntos
Borboletas , Adulto , Migração Animal , Animais , Cor , Humanos , Pigmentação , Asas de Animais
16.
Zootaxa ; 4619(2): zootaxa.4619.2.13, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31716312

RESUMO

The females of Xyo pseudohystrix Travassos Kloss, 1958 (Nematoda: Oxyuridomorpha: Hystrignathidae) are redescribed and illustrated with the aid of SEM. New features of the cephalic end, arrangement of the cervical spines and genital tract were observed. The taxonomic status of the species is discussed on the basis of discrepancies with the generic diagnosis of Xyo Cobb, 1898. Due to the lack of proper information on the genus the status of incertae sedis is proposed. The identity of the males was confirmed by molecular studies and the morphology of the specimens previously assigned by Christie (1932) as males of Hystrignathus rigidus Leidy, 1858 correspond to the current species. New locality records are given for the states of Georgia and Ohio, USA. The phylogenetic position of the species is inferred on the basis of the D2-D3 segment of the LSU rDNA and SSU rDNA.


Assuntos
Besouros , Nematoides , Animais , DNA Ribossômico , Feminino , Georgia , Masculino , Ohio , Filogenia
17.
Biol Lett ; 15(5): 20180842, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31039727

RESUMO

There is growing appreciation for the role that parasites have in ecosystems and food webs, though the possibility that they could improve an ecosystem service has never been considered. In forest ecosystems, fallen trees naturally decay over time and slowly return their nutrients to the soil. Beetles in the family Passalidae play a key role by excavating tunnels and consuming wood from these logs, thereby breaking down the wood into smaller debris. In the eastern United States, the horned passalus ( Odontotaenius disjunctus) is host to a naturally occurring nematode, Chondronema passali, which appears to cause little harm to the beetles. We suspected this was due to compensatory food consumption by parasitized individuals, which we tested here. We collected and housed 113 adult beetles in individual containers with wood for three months, then determined the amount of wood each beetle had processed into fine debris and frass. We then assessed beetles for C. passali and compared wood processing rates between parasitized and non-parasitized groups. Results showed the average daily processing rate of parasitized beetles ([Formula: see text] = 0.77 g d-1) was 15% greater than that of unparasitized ones ([Formula: see text] = 0.67 g d-1). Parasitized beetles were 6% larger, and this may explain some of this pattern, though the effect of parasitism was still significant in our analysis. By extrapolating the daily rates, we estimate that 10 adult beetles without nematodes would break down approximately 2.4 kg of wood in a single year, while a group of 10 parasitized beetles would break down 2.8 kg. While our data are consistent with the idea of compensatory feeding, because these results are based on natural infections, we cannot rule out the possibility that beetles with heightened wood consumption are simply more likely to acquire the parasite. At an ecosystem level, it may not matter which is the case; parasitized beetles provide a more effective ecosystem service.


Assuntos
Besouros , Nematoides , Animais , Ecossistema , Árvores , Madeira
18.
PLoS One ; 14(5): e0216387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116775

RESUMO

How and to what degree an animal deals with potential threats is a fascinating topic that has been well-researched, particularly in insects, though usually not with the impact of parasites in mind. A growing body of work is showing how even benign parasites can affect, positively or negatively, their hosts' physiological or behavioral reaction to threats. With this in mind we conducted an experiment using horned passalus beetles, Odontotaenius disjunctus that were naturally parasitized with a nematode Chondronema passali; we subjected beetles to simulated attacks (resembling rival fighting or predator attacks) and from videos of the encounters we quantified a suite of behaviors (antennae movement, aggressive posturing, threat displays, etc.), plus rates of alarm calls (stridulations) which all correspond to the "fight or flight" reaction. We obtained behavioral and parasite data from 140 beetles from two field collections, of which half had been housed in our lab for three weeks in conditions that would be stressful (little cover for burrowing). We observed a wide range of behaviors during the simulated attack procedure, from beetles offering little resistance to those which were extremely aggressive, though most beetles showed a moderate reaction. Alarm calling rates also varied, but surprisingly, these were not correlated with the magnitude of behavioral reactions. Also surprising was that stressful housing did not heighten the physical resistance during attacks, but did elevate alarm calling rate. Importantly, parasitized beetles had significantly reduced physical reactions to attack than those without nematodes (meaning their resistance to the attack was muted). The results concerning parasitism, coupled with prior work in our lab, indicate that the C. passali nematode depresses the hosts' acute stress, or fight or flight, reaction (likely from its energetic cost), which may make hosts more susceptible to the very dangers that they are coping with during the stress events.


Assuntos
Comportamento Animal , Besouros/parasitologia , Voo Animal , Interações Hospedeiro-Parasita/fisiologia , Nematoides/fisiologia , Animais
19.
Zootaxa ; 4551(2): 221-230, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30790824

RESUMO

Lepidonema magnum Morffe García, 2010 (Nematoda: Oxyuridomorpha: Hystrignathidae) is redescribed and illustrated with the aid of SEM. New features of the cephalic end and genital tract of the females were observed. New locality records are given. The phylogenetic position of the species is inferred on the basis of the D2-D3 segment of the 28S LSU rDNA and 18S SSU rDNA. L. magnum forms a monophyletic clade formed by other hystrignathids: Coynema poeyi (Coy, García Álvarez, 1993), two species of Longior Travassos Kloss, 1958 and two Hystrignathus Leidy, 1850.


Assuntos
Besouros , Nematoides , Animais , Cuba , DNA Ribossômico , Feminino , Filogenia
20.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743264

RESUMO

Developed countries around the world are criss-crossed with vast networks of roadways. Conservationists have recently focused attention on roadsides as possible locations for establishing pollinator habitat, with the monarch butterfly (Danaus plexippus) featuring prominently in such discussions. However, roadsides are inherently loud, which could negatively affect developing larvae. We conducted a series of experiments testing if simulated highway noise stresses monarch larvae, which we gauged by non-destructive monitoring of heart rates. In two replicated experiments, larvae exposed for 2 h experienced a significant increase in heart rate (16 and 17% elevation), indicating they perceive traffic noise as a stressor. Meanwhile, experiments exposing larvae for either 7 or 12 days to continuous traffic noise both showed no heart rate elevation at the end of larval development, suggesting chronic noise exposure leads to habituation or desensitization. Habituation to stress as larvae may impair reactions to real-world stressors as adults, which could be problematic for a butterfly that undertakes an annual two-month migration that is fraught with dangers. More generally, these results could have far-reaching implications for the billions of insects worldwide that develop near roadways, and argue that further study is needed before promoting roadside habitat for butterfly conservation.


Assuntos
Borboletas/fisiologia , Frequência Cardíaca/fisiologia , Ruído dos Transportes/efeitos adversos , Animais , Borboletas/crescimento & desenvolvimento , Ecossistema , Habituação Psicofisiológica , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...