Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(6): 1192-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639466

RESUMO

The mountains of Southwest China comprise a significant large mountain range and biodiversity hotspot imperiled by global climate change. The high species diversity in this mountain system has long been attributed to a complex set of factors, and recent large-scale macroevolutionary investigations have placed a broad timeline on plant diversification that stretches from 10 million years ago (Mya) to the present. Despite our increasing understanding of the temporal mode of speciation, finer-scale population-level investigations are lacking to better refine these temporal trends and illuminate the abiotic and biotic influences of cryptic speciation. This is largely due to the dearth of organismal sampling among closely related species and populations, spanning the incredible size and topological heterogeneity of this region. Our study dives into these evolutionary dynamics of speciation using genomic and eco-morphological data of Stellera chamaejasme L. We identified four previously unrecognized cryptic species having indistinct morphological traits and large metapopulation of evolving lineages, suggesting a more recent diversification (~2.67-0.90 Mya), largely influenced by Pleistocene glaciation and biotic factors. These factors likely influenced allopatric speciation and advocated cyclical warming-cooling episodes along elevational gradients during the Pleistocene. The study refines the evolutionary timeline to be much younger than previously implicated and raises the concern that projected future warming may influence the alpine species diversity, necessitating increased conservation efforts.


Assuntos
Biodiversidade , Especiação Genética , Thymelaeaceae , Thymelaeaceae/genética , Filogenia , Camada de Gelo
2.
Mol Phylogenet Evol ; 196: 108089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679302

RESUMO

Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.


Assuntos
Camellia , Filogenia , Camellia/genética , Camellia/classificação , Núcleo Celular/genética , Análise de Sequência de DNA , Teorema de Bayes , DNA de Plantas/genética , Evolução Molecular , Especiação Genética , Modelos Genéticos
3.
Science ; 383(6687): 1035, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452060

RESUMO

Last month, Duke University in North Carolina announced that it was shuttering its herbarium. The collection consists of nearly 1 million specimens representing the most comprehensive and historic set of plants from the southeastern United States. It also includes extensive holdings from other regions of the world, especially Mexico, Central America, and the West Indies. Duke plans to disperse these samples to other institutions for use or storage over the next 2 to 3 years, but this decision reflects a lack of awareness by academia that such collections are being leveraged as never before. With modern technologies spanning multiple fields of study, the holdings in herbaria and other natural history collections are not only facilitating a deeper and broader understanding of the past and present world but are also providing tools to meet both known and unforeseen challenges facing humanity. Science and society can hardly risk the loss of such an important resource.


Assuntos
Plantas , Manejo de Espécimes , Humanos , North Carolina , História Natural
4.
New Phytol ; 242(5): 2338-2352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531810

RESUMO

Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.


Assuntos
Mudança Climática , Modelos Biológicos , Especificidade da Espécie , Plantas , Extinção Biológica , Ecossistema
5.
Curr Biol ; 34(4): R158-R173, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412829

RESUMO

Plants have been an essential source of human medicine for millennia. In this review, we argue that a holistic, interdisciplinary approach to the study of medicinal plants that combines methods and insights from three key disciplines - evolutionary ecology, molecular biology/biochemistry, and ethnopharmacology - is poised to facilitate new breakthroughs in science, including pharmacological discoveries and rapid advancements in human health and well-being. Such interdisciplinary research leverages data and methods spanning space, time, and species associated with medicinal plant species evolution, ecology, genomics, and metabolomic trait diversity, all of which build heavily on traditional Indigenous knowledge. Such an interdisciplinary approach contrasts sharply with most well-funded and successful medicinal plant research during the last half-century, which, despite notable advancements, has greatly oversimplified the dynamic relationships between plants and humans, kept hidden the larger human narratives about these relationships, and overlooked potentially important research and discoveries into life-saving medicines. We suggest that medicinal plants and people should be viewed as partners whose relationship involves a complicated and poorly explored set of (socio-)ecological interactions including not only domestication but also commensalisms and mutualisms. In short, medicinal plant species are not just chemical factories for extraction and exploitation. Rather, they may be symbiotic partners that have shaped modern societies, improved human health, and extended human lifespans.


Assuntos
Plantas Medicinais , Humanos , Medicina Tradicional/métodos , Etnobotânica/métodos , Fitoterapia , Biodiversidade
6.
Nat Ecol Evol ; 8(3): 467-476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212525

RESUMO

Phenology varies widely over space and time because of its sensitivity to climate. However, whether phenological variation is primarily generated by rapid organismal responses (plasticity) or local adaptation remains unresolved. Here we used 1,038,027 herbarium specimens representing 1,605 species from the continental United States to measure flowering-time sensitivity to temperature over time (Stime) and space (Sspace). By comparing these estimates, we inferred how adaptation and plasticity historically influenced phenology along temperature gradients and how their contributions vary among species with different phenology and native climates and among ecoregions differing in species composition. Parameters Sspace and Stime were positively correlated (r = 0.87), of similar magnitude and more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited responsiveness in late summer and delayed flowering in autumn in response to temperature increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and plasticity, from consistently greater importance of plasticity (for example, southeastern United States plains) to their nearly equal importance throughout the season (for example, Western Sierra Madre Piedmont). Our results support the hypothesis that plasticity is the primary driver of flowering-time variation along temperature gradients, with local adaptation having a widespread but comparatively limited role.


Assuntos
Mudança Climática , Flores , Estados Unidos , Temperatura , Flores/fisiologia , Clima , América do Norte
7.
Curr Biol ; 33(16): 3409-3422.e6, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37506702

RESUMO

Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.


Assuntos
Fósseis , Magnoliopsida , Abelhas/genética , Animais , Filogenia , Genômica , Magnoliopsida/genética , América do Sul
8.
New Phytol ; 239(6): 2153-2165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36942966

RESUMO

Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.


Assuntos
Ecossistema , Urbanização , Humanos , Mudança Climática , Flores , Estações do Ano , Temperatura , Reprodução , Plantas
9.
Mol Phylogenet Evol ; 183: 107752, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36893930

RESUMO

Cystocloniacae is a highly diverse family of Rhodophyta, including species of ecological and economic importance, whose phylogeny remains largely unresolved. Species delimitation is unclear, particularly in the most speciose genus, Hypnea, and cryptic diversity has been revealed by recent molecular assessments, especially in the tropics. Here, we carried out the first phylogenomic investigation of Cystocloniaceae, focused on the genus Hypnea, inferred from chloroplast and mitochondrial genomes including taxa sampled from new and historical collections. In this work, molecular synapomorphies (gene losses, InDels and gene inversions) were identified to better characterize clades in our congruent organellar phylogenies. We also present taxon-rich phylogenies based on plastid and mitochondrial markers. Molecular and morphological comparisons of historic collections with contemporary specimens revealed the need for taxonomic updates in Hypnea, the synonymization of H. marchantiae to a later heterotypic synonym of H. cervicornis and the description of three new species: H. davisiana sp. nov., H. djamilae sp. nov. and H. evaristoae sp. nov.


Assuntos
Rodófitas , Filogenia , Rodófitas/genética , Organelas , Mitocôndrias , Cloroplastos
10.
Am J Bot ; 110(2): e16126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633920

RESUMO

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for understanding the variation in evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory spanning the geographic range of a plant-insect complex is logistically difficult. Recently, new methods have been developed using herbarium specimens to investigate patterns in plant-insect symbioses across large geographic scales. Such investigations provide insights into how accelerated anthropogenic changes may impact plant-insect interactions that are of ecological or agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples to investigate variation in herbivory damage in 13 different species of the economically important plant genus Cucurbita (Cucurbitaceae). This collection is composed of specimens of wild, undomesticated Cucurbita that were collected from across their native range, and Cucurbita cultivars collected from both within their native range and from locations where they have been introduced for agriculture in temperate North America. RESULTS: Herbivory is common on individuals of all Cucurbita species collected throughout their geographic ranges. However, estimates of herbivory varied considerably among individuals, with mesophytic species accruing more insect damage than xerophytic species, and wild specimens having more herbivory than specimens collected from human-managed habitats. CONCLUSIONS: Our study suggests that long-term evolutionary changes in habitat from xeric to mesic climates and wild to human-managed habitats may mediate the levels of herbivory pressure from coevolved herbivores. Future investigations into the potential factors that contribute to herbivory may inform the management of domesticated crop plants and their insect herbivores.


Assuntos
Cucurbita , Humanos , Animais , Herbivoria , Insetos , Ecossistema , Evolução Biológica , Plantas
11.
Trends Ecol Evol ; 38(5): 412-423, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36549958

RESUMO

The ~400 million specimens deposited across ~3000 herbaria are essential for: (i) understanding where plants have lived in the past, (ii) forecasting where they may live in the future, and (iii) delineating their conservation status. An open access 'global metaherbarium' is emerging as these specimens are digitized, mobilized, and interlinked online. This virtual biodiversity resource is attracting new users who are accelerating traditional applications of herbaria and generating basic and applied scientific innovations, including e-monographs and floras produced by diverse, interdisciplinary, and inclusive teams; robust machine-learning algorithms for species identification and phenotyping; collection and synthesis of ecological and genomic trait data at large spatiotemporal and phylogenetic scales; and exhibitions and installations that convey the beauty of plants and the value of herbaria in addressing broader societal issues.


Assuntos
Biodiversidade , Plantas , Filogenia
12.
Nat Plants ; 8(12): 1385-1393, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536014

RESUMO

Resurrecting extinct species is a fascinating and challenging idea for scientists and the general public. Whereas some theoretical progress has been made for animals, the resurrection of extinct plants (de-extinction sensu lato) is a relatively recently discussed topic. In this context, the term 'de-extinction' is used sensu lato to refer to the resurrection of 'extinct in the wild' species from seeds or tissues preserved in herbaria, as we acknowledge the current impossibility of knowing a priori whether a herbarium seed is alive and can germinate. In plants, this could be achieved by germinating or in vitro tissue-culturing old diaspores such as seeds or spores available in herbarium specimens. This paper reports the first list of plant de-extinction candidates based on the actual availability of seeds in herbarium specimens of globally extinct plants. We reviewed globally extinct seed plants using online resources and additional literature on national red lists, resulting in a list of 361 extinct taxa. We then proposed a method of prioritizing candidates for seed-plant de-extinction from diaspores found in herbarium specimens and complemented this with a phylogenetic approach to identify species that may maximize evolutionarily distinct features. Finally, combining data on seed storage behaviour and longevity, as well as specimen age in the novel 'best de-extinction candidate' score (DEXSCO), we identified 556 herbarium specimens belonging to 161 extinct species with available seeds. We expect that this list of de-extinction candidates and the novel approach to rank them will boost research efforts towards the first-ever plant de-extinction.


Assuntos
Plantas , Sementes , Filogenia , Extinção Biológica
13.
Appl Plant Sci ; 10(3): e11475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774988

RESUMO

Premise: The application of high-throughput sequencing, especially to herbarium specimens, is rapidly accelerating biodiversity research. Low-coverage sequencing of total genomic DNA (genome skimming) is particularly promising and can simultaneously recover the plastid, mitochondrial, and nuclear ribosomal regions across hundreds of species. Here, we introduce PhyloHerb, a bioinformatic pipeline to efficiently assemble phylogenomic data sets derived from genome skimming. Methods and Results: PhyloHerb uses either a built-in database or user-specified references to extract orthologous sequences from all three genomes using a BLAST search. It outputs FASTA files and offers a suite of utility functions to assist with alignment, partitioning, concatenation, and phylogeny inference. The program is freely available at https://github.com/lmcai/PhyloHerb/. Conclusions: We demonstrate that PhyloHerb can accurately identify genes using a published data set from Clusiaceae. We also show via simulations that our approach is effective for highly fragmented assemblies from herbarium specimens and is scalable to thousands of species.

14.
Trends Ecol Evol ; 37(8): 683-693, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680467

RESUMO

Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.


Assuntos
Mudança Climática , Flores , Clima , Filogenia , Plantas/genética , Estações do Ano , Temperatura
15.
Syst Biol ; 71(6): 1348-1361, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35689633

RESUMO

Whole-genome duplication (WGD) occurs broadly and repeatedly across the history of eukaryotes and is recognized as a prominent evolutionary force, especially in plants. Immediately following WGD, most genes are present in two copies as paralogs. Due to this redundancy, one copy of a paralog pair commonly undergoes pseudogenization and is eventually lost. When speciation occurs shortly after WGD; however, differential loss of paralogs may lead to spurious phylogenetic inference resulting from the inclusion of pseudoorthologs-paralogous genes mistakenly identified as orthologs because they are present in single copies within each sampled species. The influence and impact of including pseudoorthologs versus true orthologs as a result of gene extinction (or incomplete laboratory sampling) are only recently gaining empirical attention in the phylogenomics community. Moreover, few studies have yet to investigate this phenomenon in an explicit coalescent framework. Here, using mathematical models, numerous simulated data sets, and two newly assembled empirical data sets, we assess the effect of pseudoorthologs on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and differential gene loss scenarios following WGD. When gene loss occurs along the terminal branches of the species tree, alignment-based (BPP) and gene-tree-based (ASTRAL, MP-EST, and STAR) coalescent methods are adversely affected as the degree of ILS increases. This can be greatly improved by sampling a sufficiently large number of genes. Under the same circumstances, however, concatenation methods consistently estimate incorrect species trees as the number of genes increases. Additionally, pseudoorthologs can greatly mislead species tree inference when gene loss occurs along the internal branches of the species tree. Here, both coalescent and concatenation methods yield inconsistent results. These results underscore the importance of understanding the influence of pseudoorthologs in the phylogenomics era. [Coalescent method; concatenation method; incomplete lineage sorting; pseudoorthologs; single-copy gene; whole-genome duplication.].


Assuntos
Duplicação Gênica , Especiação Genética , Evolução Biológica , Simulação por Computador , Modelos Genéticos , Filogenia
16.
New Phytol ; 233(3): 1466-1478, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626123

RESUMO

Interactions between species can influence successful reproduction, resulting in reproductive character displacement, where the similarity of reproductive traits - such as flowering time - among close relatives growing together differ from when growing apart. Evidence for the overall prevalence and direction of this phenomenon, and its stability under environmental change, remains untested across large scales. Using the power of crowdsourcing, we gathered phenological information from over 40 000 herbarium specimens, and investigated displacement in flowering time across 110 animal-pollinated species in the eastern USA. Overall, flowering time displacement is not common across large scales. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. Furthermore, with climate change, the flowering times of closely related species are predicted, on average, to shift further apart by the mid-21st century. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. However, future climate change may alter the differences in reproductive timing among many of these species pairs, which may have significant consequences for species interactions and gene flow. Our study provides one promising path towards understanding how the phenological landscape is structured and may respond to future environmental change.


Assuntos
Magnoliopsida , Animais , Mudança Climática , Flores , Estações do Ano , Temperatura
17.
Natl Sci Rev ; 9(12): nwac276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36687562

RESUMO

Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere.

18.
Nat Commun ; 12(1): 6983, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873159

RESUMO

Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness.


Assuntos
Algoritmos , Biodiversidade , Bases de Dados Factuais , Modelos Teóricos , Filogenia , Plantas/classificação , África , Ásia , Austrália , Ecossistema , Europa (Continente) , Geografia , Atividades Humanas , Migração Humana , Humanos , América do Norte , Plantas/genética
19.
Mol Phylogenet Evol ; 165: 107294, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419587

RESUMO

The Gracilariales is a highly diverse, widely distributed order of red algae (Rhodophyta) that forms a well-supported clade. Aside from their ecological importance, species of Gracilariales provide important sources of agarans and possess bioactive compounds with medicinal and pharmaceutical use. Recent phylogenetic analyses from a small number of genes have greatly advanced our knowledge of evolutionary relationships in this clade, yet several key nodes were not especially well resolved. We assembled a phylogenomic data set containing 79 nuclear genes, 195 plastid genes, and 24 mitochondrial genes from species representing all three major Gracilariales lineages, including: Melanthalia, Gracilariopsis, and Gracilaria sensu lato. This data set leads to a fully-resolved phylogeny of Gracilariales, which is highly-consistent across genomic compartments. In agreement with previous findings, Melanthalia obtusata was sister to a clade including Gracilaria s.l. and Gracilariopsis, which were each resolved as well-supported clades. Our results also clarified the long-standing uncertainty about relationships in Gracilaria s.l., not resolved in single and multi-genes approaches. We further characterized the divergence time, organellar genome architecture, and morphological trait evolution in Gracilarales to better facilitate its taxonomic treatment. Gracilariopsis and Gracilaria s.l. are comparable taxonomic ranks, based on the overlapping time range of their divergence. The genomic structure of plastid and mitochondria is highly conserved within each clade but differs slightly among these clades in gene contents. For example, the plastid gene petP is lost in Gracilaria s.l. and the mitochondrial gene trnH is in different positions in the genome of Gracilariopsis and Gracilaria s.l. Our analyses of ancestral character evolution provide evidence that the main characters used to delimitate genera in Gracilariales, such as spermatangia type and features of the cystocarp's anatomy, overlap in subclades of Gracilaria s.l. We discuss the taxonomy of Gracilariales in light of these results and propose an objective and practical classification, which is in agreement with the criteria of monophyly, exclusive characters, predictability and nomenclatural stability.


Assuntos
Gracilaria , Rodófitas , Genes Mitocondriais , Gracilaria/genética , Filogenia , Plastídeos/genética , Rodófitas/genética
20.
J Plant Res ; 134(5): 971-988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117960

RESUMO

Desiccation tolerance was a key trait that allowed plants to colonize land. However, little is known about the transition from desiccation tolerant non-vascular plants to desiccation sensitive vascular ones. Filmy ferns (Hymenophyllaceae) represent a useful system to investigate how water-stress strategies differ between non-vascular and vascular stages within a single organism because they have vascularized sporophytes and nonvascular gametophytes that are each capable of varying degrees of desiccation tolerance. To explore this, we surveyed sporophytes and gametophytes of 19 species (22 taxa including varieties) of filmy ferns on Moorea (French Polynesia) and used chlorophyll fluorescence to measure desiccation tolerance and light responses. We conducted phylogenetically informed analyses to identify differences in physiology between life stages and growth habits. Gametophytes had similar or less desiccation tolerance (ability to recover from 2 days desiccation at - 86 MPa) and lower photosynthetic optima (maximum electron transport rate of photosystem II and light level at 95% of that rate) than sporophytes. Epiphytes were more tolerant of desiccation than terrestrial species in both life stages. Despite their lack of greater physiological tolerances, gametophytes of several species occurred over a wider elevational range than conspecific sporophytes. Our results demonstrate that filmy fern gametophytes and sporophytes differ in their physiology and niche requirements, and point to the importance of microhabitat in shaping the evolution of water-use strategies in vascular plants.


Assuntos
Gleiquênias , Células Germinativas Vegetais , Fotossíntese , Complexo de Proteína do Fotossistema II , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...