Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(38): 24885-24893, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30232483

RESUMO

M06L/6-311++G(d,p)//M06L/6-31G(d,p) level density functional theory studies show that the endohedral reaction of C60 with X- (X = F, Cl, Br, OH, NH2, NO2, CN, and ClO) is exothermic by 37.8-65.2 kcal mol-1. The exothermic character of the reaction is drastically reduced in polar and nonpolar solvents due to the lack of direct solvation influence on the encapsulated anion. In all X-@C60, the occupied frontier molecular orbitals (FMOs) are located on X- while the energy levels of FMOs centered on C60 are very similar to those of the C60- radical anion. Molecular electrostatic potential (MESP) analysis of X-@C60 revealed that the negative character of the MESP minimum (Vmin) on the carbon cage increases by ∼72 fold compared to C60, which is very similar to the enhancement in the negative MESP observed on the C60- radical anion. The MESP data and quantum theory of atoms in molecules (QTAIM) analysis of charge, electron delocalization index, and Laplacian of bond critical point (bcp) support significant electron sharing from the anion to the carbon atoms of the fullerene cage, which makes the cage behave like a very large anion in a closed shell configuration. The data are also supportive of a multicenter charge-shift type of bonding interaction between the anion and the carbon cage. The anionic nature of the fullerene cage has been verified in the cases of larger systems such as Cl-@C70, Cl-@C84, and Cl-@C90. The binding of a counter cation K+ with X-@C60 is found to be highly exothermic (∼72 kcal mol-1) and very similar to the binding of K+ with the C60- radical anion (72.9 kcal mol-1), which suggests that C60 in X-@C60 behaves as a closed shell anion.

2.
Dalton Trans ; 42(19): 7147-57, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23525123

RESUMO

An in situ seeding growth methodology towards the preparation of core-shell nanoparticles composed of noble metals has been developed by employing trimethylamine borane (TMAB) as the reducing agent. Being a weak reducing agent, TMAB is able to distinguish the smallest reduction potential window of any two metals which renders selective reduction of metal ions thus affording a core-shell architecture of the nanoparticles. A dramatic effect of solvent was noted during the reduction of Ag(+) ions: an immediate reduction took place at room temperature when dry THF was used as solvent however, usage of wet THF (THF used directly from the bottle) brings out the reduction only at reflux conditions. In the case of Au and Pd nanoparticles, preparation was found to be independent of the quality of solvent used. Au nanoparticles are realized at room temperature whereas reflux conditions are required in the case of Pd nanoparticles. This difference in behavior of the monometallic nanoparticles was successfully exploited to construct different noble metal nanoparticles with core-shell architectures such as Au@Ag, Ag@Au, and Ag@Pd. Transformation of these core-shell nanoparticles to their thermodynamically stable alloy counterparts is also demonstrated under very mild conditions reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA