Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864635

RESUMO

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Aves Domésticas , Infecções Urinárias , Sequenciamento Completo do Genoma , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Humanos , Criança , Aves Domésticas/microbiologia , Adolescente , Pré-Escolar , Lactente , Masculino , Feminino , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/patogenicidade , Tipagem de Sequências Multilocus , Genoma Bacteriano
2.
One Health ; 16: 100518, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363239

RESUMO

A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements - predominantly plasmids and bacteriophages - and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.

3.
BMC Pulm Med ; 22(1): 160, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473605

RESUMO

BACKGROUND: Smoke exposure culminates as a progressive lung complication involving airway inflammation and remodeling. While primary smoke poses the greatest risk, nearly half of the US population is also at risk due to exposure to secondhand smoke (SHS). METHODS: We used WT, RAGE-/- (KO), and Tet-inducible lung-specific RAGE overexpressing transgenic (TG) mice to study the role of RAGE during short-term responses to SHS. We evaluated SHS effects in mice with and without semi-synthetic glycosaminoglycan ethers (SAGEs), which are anionic, partially lipophilic sulfated polysaccharide derivatives known to inhibit RAGE signaling. TG Mice were weaned and fed doxycycline to induce RAGE at postnatal day (PN) 30. At PN40, mice from each line were exposed to room air (RA) or SHS from three Kentucky 3R4F research cigarettes via a nose-only delivery system (Scireq Scientific, Montreal, Canada) five days a week and i.p. injections of PBS or SAGE (30 mg/kg body weight) occurred three times per week from PN40-70 before mice were sacrificed on PN70. RESULTS: RAGE mRNA and protein expression was elevated following SHS exposure of control and TG mice and not detected in RAGE KO mice. Bronchoalveolar lavage fluid (BALF) analysis revealed RAGE-mediated influence on inflammatory cell diapedesis, total protein, and pro-inflammatory mediators following exposure. Lung histological assessment revealed indistinguishable morphology following exposure, yet parenchymal apoptosis was increased. Inflammatory signaling intermediates such as Ras and NF-κB, as well as downstream responses were influenced by the availability of RAGE, as evidenced by RAGE KO and SAGE treatment. CONCLUSIONS: These data provide fascinating insight suggesting therapeutic potential for the use of RAGE inhibitors in lungs exposed to SHS smoke.


Assuntos
Pneumonia , Poluição por Fumaça de Tabaco , Animais , Éteres , Glicosaminoglicanos , Humanos , Camundongos , Camundongos Transgênicos , Pneumonia/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos
4.
BMC Microbiol ; 18(1): 174, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390618

RESUMO

BACKGROUND: We sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, "raised without antibiotics", and conventional. RESULTS: We collected all available brands of retail chicken and turkey-including conventional, "raised without antibiotic", and organic products-every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested-and multidrug resistance-among isolates from conventional turkey products when compared to those labelled organic or "raised without antibiotics". E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category. CONCLUSION: The high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to "raised without antibiotics" and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Alimentos Orgânicos/microbiologia , Aves Domésticas/microbiologia , Animais , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Contaminação de Alimentos , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana , Perus/microbiologia
5.
mBio ; 9(4)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154256

RESUMO

Escherichia coli sequence type 131 (ST131) has emerged rapidly to become the most prevalent extraintestinal pathogenic E. coli clones in circulation today. Previous investigations appeared to exonerate retail meat as a source of human exposure to ST131; however, these studies focused mainly on extensively multidrug-resistant ST131 strains, which typically carry allele 30 of the fimH type 1 fimbrial adhesin gene (ST131-H30). To estimate the frequency of extraintestinal human infections arising from foodborne ST131 strains without bias toward particular sublineages or phenotypes, we conducted a 1-year prospective study of E. coli from meat products and clinical cultures in Flagstaff, Arizona. We characterized all isolates by multilocus sequence typing, fimH typing, and core genome phylogenetic analyses, and we screened isolates for avian-associated ColV plasmids as an indication of poultry adaptation. E. coli was isolated from 79.8% of the 2,452 meat samples and 72.4% of the 1,735 culture-positive clinical samples. Twenty-seven meat isolates were ST131 and belonged almost exclusively (n = 25) to the ST131-H22 lineage. All but 1 of the 25 H22 meat isolates were from poultry products, and all but 2 carried poultry-associated ColV plasmids. Of the 1,188 contemporaneous human clinical E. coli isolates, 24 were ST131-H22, one-quarter of which occurred in the same high-resolution phylogenetic clades as the ST131-H22 meat isolates and carried ColV plasmids. Molecular clock analysis of an international ST131-H22 genome collection suggested that ColV plasmids have been acquired at least six times since the 1940s and that poultry-to-human transmission is not limited to the United States.IMPORTANCEE. coli ST131 is an important extraintestinal pathogen that can colonize the gastrointestinal tracts of humans and food animals. Here, we combined detection of accessory traits associated with avian adaptation (ColV plasmids) with high-resolution phylogenetics to quantify the portion of human infections caused by ST131 strains of food animal origin. Our results suggest that one ST131 sublineage-ST131-H22-has become established in poultry populations around the world and that meat may serve as a vehicle for human exposure and infection. ST131-H22 is just one of many E. coli lineages that may be transmitted from food animals to humans. Additional studies that combine detection of host-associated accessory elements with phylogenetics may allow us to quantify the total fraction of human extraintestinal infections attributable to food animal E. coli strains.


Assuntos
Infecções por Escherichia coli/microbiologia , Carne/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Adesinas de Escherichia coli/genética , Arizona , Proteínas de Fímbrias/genética , Humanos , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/análise , Estudos Prospectivos , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética
7.
Curr Environ Health Rep ; 3(2): 128-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27022987

RESUMO

Klebsiella pneumoniae is a colonizer of livestock, a contaminant of retail meats and vegetables, and a cause of extraintestinal infections in humans. Antibiotic-resistant strains of K. pneumoniae are becoming increasingly prevalent among hospital and community-acquired infections. Antibiotics are used extensively in conventional food-animal production, where they select for antibiotic-resistant bacteria. Antibiotic-resistant K. pneumoniae has been isolated from livestock as well as from a variety of retail meats, seafood, and vegetables. Furthermore, recent phylogenetic analyses suggest close relationships between K. pneumoniae from humans and livestock. Therefore, it is essential that we quantify the contribution of foodborne K. pneumoniae to antibiotic-resistant human infections.


Assuntos
Microbiologia de Alimentos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Gado/microbiologia , Animais , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Prevalência , Alimentos Marinhos/microbiologia
8.
Clin Infect Dis ; 61(6): 892-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206847

RESUMO

BACKGROUND: Klebsiella pneumoniae is a common colonizer of the gastrointestinal tract of humans, companion animals, and livestock. To better understand potential contributions of foodborne K. pneumoniae to human clinical infections, we compared K. pneumoniae isolates from retail meat products and human clinical specimens to assess their similarity based on antibiotic resistance, genetic relatedness, and virulence. METHODS: Klebsiella pneumoniae was isolated from retail meats from Flagstaff grocery stores in 2012 and from urine and blood specimens from Flagstaff Medical Center in 2011-2012. Isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Genetic relatedness of the isolates was assessed using multilocus sequence typing and phylogenetic analyses. Extraintestinal virulence of several closely related meat-source and urine isolates was assessed using a murine sepsis model. RESULTS: Meat-source isolates were significantly more likely to be multidrug resistant and resistant to tetracycline and gentamicin than clinical isolates. Four sequence types occurred among both meat-source and clinical isolates. Phylogenetic analyses confirmed close relationships among meat-source and clinical isolates. Isolates from both sources showed similar virulence in the mouse sepsis model. CONCLUSIONS: Meat-source K. pneumoniae isolates were more likely than clinical isolates to be antibiotic resistant, which could reflect selective pressures from antibiotic use in food-animal production. The close genetic relatedness of meat-source and clinical isolates, coupled with similarities in virulence, suggest that the barriers to transmission between these 2 sources are low. Taken together, our results suggest that retail meat is a potential vehicle for transmitting virulent, antibiotic-resistant K. pneumoniae from food animals to humans.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Carne/microbiologia , Infecções Urinárias/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Genoma Bacteriano , Genótipo , Humanos , Infecções por Klebsiella/epidemiologia , Camundongos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Sepse/epidemiologia , Sepse/microbiologia , Análise de Sequência de DNA , Infecções Urinárias/epidemiologia , Virulência , Adulto Jovem , Zoonoses/transmissão
9.
J Clin Microbiol ; 53(7): 2132-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903577

RESUMO

Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria that colonize the human pharynx and can cause respiratory tract infections, such as acute otitis media (AOM). Since NTHI require iron from their hosts for aerobic growth, the heme acquisition genes may play a significant role in avoiding host nutritional immunity and determining virulence. Therefore, we employed a hybridization-based technique to compare the prevalence of five heme acquisition genes (hxuA, hxuB, hxuC, hemR, and hup) between 514 middle ear strains from children with AOM and 235 throat strains from healthy children. We also investigated their prevalences in 148 Haemophilus haemolyticus strains, a closely related species that colonizes the human pharynx and is considered to be nonpathogenic. Four out of five genes (hxuA, hxuB, hxuC, and hemR) were significantly more prevalent in the middle ear strains (96%, 100%, 100%, and 97%, respectively) than in throat strains (80%, 92%, 93%, and 85%, respectively) of NTHI, suggesting that strains possessing these genes have a virulence advantage over those lacking them. All five genes were dramatically more prevalent in NTHI strains than in H. haemolyticus, with 91% versus 9% hxuA, 98% versus 11% hxuB, 98% versus 11% hxuC, 93% versus 20% hemR, and 97% versus 34% hup, supporting their potential role in virulence and highlighting their possibility to serve as biomarkers to distinguish H. influenzae from H. haemolyticus. In summary, this study demonstrates that heme acquisition genes are more prevalent in disease-causing NTHI strains isolated from the middle ear than in colonizing NTHI strains and H. haemolyticus isolated from the pharynx.


Assuntos
Portador Sadio/microbiologia , Infecções por Haemophilus/microbiologia , Haemophilus/genética , Heme/metabolismo , Proteínas de Membrana Transportadoras/genética , Adulto , Transporte Biológico , Criança , Pré-Escolar , Orelha Média/microbiologia , Haemophilus/isolamento & purificação , Haemophilus/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Nasofaringe/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Infect Genet Evol ; 28: 223-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25290952

RESUMO

Nontypeable Haemophilus influenzae (NTHi) are Gram-negative coccobacilli that colonize the human pharynx, their only known natural reservoir. Adherence to the host epithelium facilitates NTHi colonization and marks one of the first steps in NTHi pathogenesis. Epithelial cell attachment is mediated, in part, by a pair of high molecular weight (HMW) adhesins that are highly immunogenic, antigenically diverse, and display a wide range of amino acid diversity both within and between isolates. In this study, the prevalence of hmwA, which encodes the HMW adhesin, was determined for a collection of 170 NTHi isolates recovered from the middle ears of children with otitis media (OM isolates) or throats or nasopharynges of healthy children (commensal isolates) from Finland, Israel, and the U.S. Overall, hmwA was detected in 61% of NTHi isolates and was significantly more prevalent (P=0.004) among OM isolates than among commensal isolates; the prevalence ratio comparing hmwA prevalence among ear isolates with that of commensal isolates was 1.47 (95% CI (1.12, 1.92)). Ninety-five percent (98/103) of the hmwA-positive NTHi isolates possessed two hmw loci. To advance our understanding of hmwA binding sequence diversity, we determined the DNA sequence of the hmwA binding region of 33 isolates from this collection. The average amino acid identity across all hmwA sequences was 62%. Phylogenetic analyses of the hmwA binding revealed four distinct sequence clusters, and the majority of hmwA sequences (83%) belonged to one of two dominant sequence clusters. hmwA sequences did not cluster by chromosomal location, geographic region, or disease status.


Assuntos
Adesinas Bacterianas/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/isolamento & purificação , Nasofaringe/microbiologia , Otite Média/microbiologia , Faringe/microbiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Sítios de Ligação , Criança , Pré-Escolar , Evolução Molecular , Finlândia , Variação Genética , Haemophilus influenzae/classificação , Haemophilus influenzae/genética , Humanos , Lactente , Recém-Nascido , Israel , Filogenia , Estados Unidos
11.
J Theor Biol ; 355: 208-18, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24747580

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a bacterium that resides within the human pharynx. Because NTHi is human-restricted, its long-term survival is dependent upon its ability to successfully colonize new hosts. Adherence to host epithelium, mediated by bacterial adhesins, is one of the first steps in NTHi colonization. NTHi express several adhesins, including the high molecular weight (HMW) adhesins that mediate attachment to the respiratory epithelium where they interact with the host immune system to elicit a strong humoral response. hmwA, which encodes the HMW adhesin, undergoes phase variation mediated by 7-base pair tandem repeats located within its promoter region. Repeat number affects both hmwA transcription and HMW-adhesin production such that as the number of repeats increases, adhesin production decreases. Cells expressing large amounts of HMW adhesins may be critical for the establishment and maintenance of NTHi colonization, but they might also incur greater fitness costs when faced with an adhesin-specific antibody-mediated immune response. We hypothesized that the occurrence of large deletion events within the hmwA repeat region allows NTHi cells to maintain adherence in the presence of antibody-mediated immunity. To study this, we developed a mathematical model, incorporating hmwA phase variation and antibody-mediated immunity, to explore the trade-off between bacterial adherence and immune evasion. The model predicts that antibody levels and avidity, catastrophic loss rates, and population carrying capacity all significantly affected numbers of adherent NTHi cells within a host. These results suggest that the occurrence of large, yet rare, deletion events allows for stable maintenance of a small population of adherent cells in spite of HMW adhesin specific antibody-mediated immunity. These adherent subpopulations may be important for sustaining colonization and/or maintaining transmission.


Assuntos
Adesinas Bacterianas/imunologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Imunidade Humoral , Modelos Imunológicos , Mucosa Respiratória/imunologia , Anticorpos Antibacterianos/imunologia , Humanos , Mucosa Respiratória/microbiologia
12.
J Clin Microbiol ; 51(2): 653-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224103

RESUMO

The ure operon was significantly more prevalent in Haemophilus influenzae isolates causing otitis media and chronic obstructive pulmonary disease (COPD)-associated bronchitis than in those from throats of healthy individuals (97% versus 78.1%, P < 0.001). Strains lacking the ure operon are over 8 times more likely to be from the throat than either otitis media or COPD isolates.


Assuntos
Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Óperon , Urease/genética , Urease/metabolismo , Bronquite/microbiologia , Ativação Enzimática , Genes Bacterianos , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Humanos , Otite Média/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Fatores de Virulência/genética
13.
J Clin Microbiol ; 49(7): 2594-601, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525217

RESUMO

Haemophilus influenzae strains are classified as typeable or nontypeable H. influenzae (NTHI) based upon the presence or absence of capsule. In addition to serotyping, which is subject to false-positive results, typeable strains can be identified through the detection of the capsular export gene bexA and one of six capsule-specific genes, but this method is resource intensive, especially in characterizing large numbers of strains. To address these challenges, we developed a bexB-based method to differentiate true NTHI strains from typeable strains. We validated a PCR-based method to detect bexB in 10 strains whose capsule status was well defined. Among 40 strains that were previously serotype positive in clinical microbiology laboratories, 5 lacked bexA, bexB, and capsule type-specific genes by PCR analysis and thus likely represent false-positive serotyping results. Among 94 additional otitis media, commensal, and serotype b-negative invasive strains, 85 were bexA and bexB negative and 9 contained either a complete or partial capsule locus, i.e., 8 were bexA and bexB positive and 1 was bexA negative but bexB positive. Finally, we adapted the method for use in a high-throughput DNA hybridization-based microarray method, which showed 98.75 and 97.5% concordance to the PCR methods for bexA and bexB, respectively. In addition, bexB showed 84% or greater nucleotide identity among strains containing the capsule locus. In this study, we demonstrate that bexB is a reliable proxy for the capsule locus and that its detection provides a simple and reliable method for differentiating strains that lack the entire capsule locus from those containing a partial or complete capsule locus.


Assuntos
Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Haemophilus influenzae/classificação , Haemophilus influenzae/genética , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Análise em Microsséries , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
14.
J Clin Microbiol ; 48(7): 2565-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20463164

RESUMO

Five genetic islands (HiGI) found in Haemophilus influenzae type b strain Eagan were used as hybridization probes on type b, Haemophilus haemolyticus, and nontypeable H. influenzae (NTHi) isolates. HiGI2 and HiGI7 were significantly more prevalent in NTHi isolates from children with otitis media than in those from the throats of healthy children.


Assuntos
Ilhas Genômicas/genética , Infecções por Haemophilus/genética , Haemophilus influenzae tipo b/genética , Primers do DNA , Orelha Média/microbiologia , Infecções por Haemophilus/epidemiologia , Haemophilus influenzae tipo b/classificação , Haemophilus influenzae tipo b/isolamento & purificação , Humanos , Faringe/microbiologia , Prevalência
15.
J Clin Microbiol ; 48(3): 714-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042621

RESUMO

The sodC gene has been reported to be a useful marker for differentiating nontypeable (NT) Haemophilus influenzae from Haemophilus haemolyticus in respiratory-tract samples, but discrepancies exist as to the prevalence of sodC in NT H. influenzae. Therefore, we used a microarray-based, "library-on-a-slide" method to differentiate the species and found that 21 of 169 (12.4%) NT H. influenzae strains and all 110 (100%) H. haemolyticus strains possessed the sodC gene. Multilocus sequence analysis confirmed that the 21 NT H. influenzae strains were H. influenzae and not H. haemolyticus. An inactive sodC gene has been reported in encapsulated H. influenzae strains belonging to phylogenetic division II. Capsule-specific Southern hybridization and PCR and a lack of copper/zinc-cofactored superoxide dismutase (CuZnSOD) expression indicated that 6 of the 21 sodC-containing NT H. influenzae strains in our study were likely capsule-deficient mutants belonging to phylogenetic division II. DNA sequence comparisons of the 21 H. influenzae sodC genes with sodC from H. haemolyticus or encapsulated H. influenzae demonstrated that the sodC genes of the six H. influenzae capsule-deficient mutants were, on average, 99% identical to sodC from encapsulated H. influenzae but only 85% identical to sodC from H. haemolyticus. The sodC genes from 2/15 NT H. influenzae strains were similarly more closely related to sodC from encapsulated strains, while sodC genes from 13 NT H. influenzae strains were almost 95% identical to sodC genes from H. haemolyticus, suggesting the possibility of interspecies recombination in these strains. In summary, this study demonstrates that sodC is not completely absent (9.2%) in true NT H. influenzae strains.


Assuntos
Proteínas de Bactérias/genética , Haemophilus/genética , Análise em Microsséries , Superóxido Dismutase/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Prevalência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Infect Immun ; 74(12): 6811-20, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17030579

RESUMO

Helicobacter pylori is dependent upon the production of the highly abundant and active metalloenzyme urease for colonization of the human stomach. Thus, H. pylori has an absolute requirement for the transition metal nickel, a required cofactor for urease. To investigate the contribution of genes that are factors in this process, microarray analysis comparing the transcriptome of wild-type H. pylori 26695 cultured in brucella broth containing fetal calf serum (BBF) alone or supplemented with 100 microM NiCl(2) suggested that HP1512 is repressed in the presence of 100 microM supplemental nickel. When measured by comparative real-time quantitative PCR (qPCR), HP1512 transcription was reduced 43-fold relative to the value for the wild type when cultured in BBF supplemented with 10 microM NiCl(2). When grown in unsupplemented BBF, urease activity of an HP1512::cat mutant was significantly reduced compared to the wild type, 4.9 +/- 0.5 micromol/min/mg of protein (n = 7) and 17.1 +/- 4.9 micromol/min/mg of protein (n = 13), respectively (P < 0.0001). In silico analysis of the HP1511-HP1512 (HP1511-1512) intergenic region identified a putative NikR operator upstream of HP1512. Gel shift analysis with purified recombinant NikR verified nickel-dependent binding of H. pylori NikR to the HP1511-1512 intergenic region. Furthermore, comparative real-time qPCR of four nickel-related genes suggests that mutation of HP1512 results in reduced intracellular nickel concentration relative to wild-type H. pylori 26695. Taken together, these data suggest that HP1512 encodes a NikR-nickel-regulated outer membrane protein.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/enzimologia , Níquel/metabolismo , Urease/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Níquel/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/metabolismo , Transcrição Gênica/efeitos dos fármacos , Urease/análise , Urease/genética
17.
Helicobacter ; 10(5): 416-23, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16181352

RESUMO

BACKGROUND: The gastric pathogen Helicobacter pylori produces urease in amounts up to 10% of its cell protein. This enzyme, which catalyzes the hydrolysis of urea to ammonia and carbon dioxide, protects the bacterium from gastric acid. Urease, a nickel metalloenzyme, requires active uptake of nickel ions from the environment to maintain its activity. NixA is a nickel transport protein that resides in the cytoplasmic membrane. Mutation of nixA significantly reduces but does not abolish urease activity, strongly suggesting the presence of a second transporter. We postulated that the dipeptide permease (dpp) genes that are homologous to the nik operon of Escherichia coli could be a second nickel transporter. The predicted Dpp polypeptides DppA, DppC, and DppD of H. pylori share approximately 40%, 53%, and 56% amino acid sequence identity with their respective E. coli homologs. METHODS: A mutation in dppA, constructed by insertional inactivation with a chloramphenicol resistance cassette, was introduced by allelic exchange into H. pylori strain 26695. RESULTS: When compared to the parental strain, urease activity was not decreased in a dppA mutant. CONCLUSIONS: DppA does not contribute to the synthesis of catalytically active urease in H. pylori 26695 and is likely not a nickel importer in H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Urease/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Mutação , Níquel/metabolismo , Níquel/farmacologia , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...