Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617370

RESUMO

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the fluorescence of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate, not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.

2.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398232

RESUMO

Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs) which interact with synaptic inputs to produce plateau potentials and to mediate synaptic plasticity. The biophysical rules which govern the timing, spatial structures, and ionic character of dendritic excitations are not well understood. We developed molecular, optical, and computational tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent bAP propagation in distal dendrites, driven by locally generated Na + spikes (dSpikes). Dendritic depolarization creates a transient window for dSpike propagation, opened by A-type K V channel inactivation, and closed by slow Na V inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.

3.
Nat Mater ; 23(2): 290-300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845321

RESUMO

Measuring cellular and tissue mechanics inside intact living organisms is essential for interrogating the roles of force in physiological and disease processes. Current agents for studying the mechanobiology of intact, living organisms are limited by poor light penetration and material stability. Magnetomotive ultrasound is an emerging modality for real-time in vivo imaging of tissue mechanics. Nonetheless, it has poor sensitivity and spatiotemporal resolution. Here we describe magneto-gas vesicles (MGVs), protein nanostructures based on gas vesicles and magnetic nanoparticles that produce differential ultrasound signals in response to varying mechanical properties of surrounding tissues. These hybrid nanomaterials significantly improve signal strength and detection sensitivity. Furthermore, MGVs enable non-invasive, long-term and quantitative measurements of mechanical properties within three-dimensional tissues and in vivo fibrosis models. Using MGVs as novel contrast agents, we demonstrate their potential for non-invasive imaging of tissue elasticity, offering insights into mechanobiology and its application to disease diagnosis and treatment.


Assuntos
Nanopartículas , Nanoestruturas , Diagnóstico por Imagem/métodos , Proteínas/química , Acústica , Nanopartículas/química
4.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014011

RESUMO

Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in vivo, but the relative merits of one-photon (1P) vs. two-photon (2P) voltage imaging are not well characterized. Here we compare the photophysical and imaging properties of commonly used GEVIs under 1P and 2P excitation. 2P excitation requires ~104-fold more illumination power per cell to produce comparable photon count rates to 1P excitation, driving a stringent tradeoff between shot noise and tissue photodamage.

5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569386

RESUMO

Topoisomerases, common targets for anti-cancer therapeutics, are crucial enzymes for DNA replication, transcription, and many other aspects of DNA metabolism. The potential anti-cancer effects of thiosemicarbazones (TSC) and metal-TSC complexes have been demonstrated to target several biological processes, including DNA metabolism. Human topoisomerases were discovered among the molecular targets for TSCs, and metal-chelated TSCs specifically displayed significant inhibition of topoisomerase II. The processes by which metal-TSCs or TSCs inhibit topoisomerases are still being studied. In this brief review, we summarize the TSCs and metal-TSCs that inhibit various types of human topoisomerases, and we note some of the key unanswered questions regarding this interesting class of diverse compounds.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Complexos de Coordenação/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Cobre/farmacologia , DNA , Tiossemicarbazonas/farmacologia , Antineoplásicos/farmacologia
6.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292691

RESUMO

Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.

8.
Nat Methods ; 20(7): 1082-1094, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36624211

RESUMO

Video-based screening of pooled libraries is a powerful approach for directed evolution of biosensors because it enables selection along multiple dimensions simultaneously from large libraries. Here we develop a screening platform, Photopick, which achieves precise phenotype-activated photoselection over a large field of view (2.3 × 2.3 mm, containing >103 cells, per shot). We used the Photopick platform to evolve archaerhodopsin-derived genetically encoded voltage indicators (GEVIs) with improved signal-to-noise ratio (QuasAr6a) and kinetics (QuasAr6b). These GEVIs gave improved signals in cultured neurons and in live mouse brains. By combining targeted in vivo optogenetic stimulation with high-precision voltage imaging, we characterized inhibitory synaptic coupling between individual cortical NDNF (neuron-derived neurotrophic factor) interneurons, and excitatory electrical synapses between individual hippocampal parvalbumin neurons. The QuasAr6 GEVIs are powerful tools for all-optical electrophysiology and the Photopick approach could be adapted to evolve a broad range of biosensors.


Assuntos
Fenômenos Eletrofisiológicos , Hipocampo , Camundongos , Animais , Hipocampo/fisiologia , Células Cultivadas , Neurônios/fisiologia , Interneurônios
9.
Health Educ Behav ; 49(2): 231-241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189728

RESUMO

COVID-19 was the third leading cause of death in the United States in 2020. Prior to the wide dissemination of SARS-CoV-2 vaccines, individual prevention behaviors, such as wearing face masks, have been the primary non-pharmaceutical interventions to reduce infections. We surveyed 404 North Carolina residents recruited through Amazon MTurk in July 2020 to assess adherence to key prevention behaviors (6-foot distancing, mask wearing, and gathering limits) and barriers to and facilitators of adherence. Participants reported past 7-day prevention behaviors and behavioral barriers and facilitators informed by the Integrated Behavior Model and the Health Belief Model (perceived risk, perceived severity, behavioral attitudes, injunctive and descriptive norms, and personal agency). Reported adherence to each behavior in the past 7 days was generally high, with lower adherence to 6-foot distancing and mask wearing in the work context. The most commonly endorsed barriers to 6-foot distancing included physical impediments, forgetting, and unfavorable descriptive norms. For mask wearing, ability to keep a distance, discomfort/inconvenience, and forgetting were most commonly endorsed. In logistic regression models, injunctive social norms followed by perceived personal agency were the strongest independent correlates of 6-foot distancing. Behavioral attitudes and injunctive social norms were independently associated with mask wearing. For gathering size limit adherence, perceived personal agency was the strongest independent predictor followed by perceived severity of COVID-19. Messaging campaigns targeting these barriers and facilitators should be tested. Interventions improving the convenience and salience of physical distancing and mask wearing in high-density public places and places of work may also promote prevention behaviors.


Assuntos
COVID-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Máscaras , North Carolina , SARS-CoV-2 , Estados Unidos
10.
Ecol Evol ; 10(12): 5922-5931, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607201

RESUMO

Recently diverged populations in the early stages of speciation offer an opportunity to understand mechanisms of isolation and their relative contributions. Drosophila willistoni is a tropical species with broad distribution from Argentina to the southern United States, including the Caribbean islands. A postzygotic barrier between northern populations (North America, Central America, and the northern Caribbean islands) and southern populations (South American and the southern Caribbean islands) has been recently documented and used to propose the existence of two different subspecies. Here, we identify premating isolation between populations regardless of their subspecies status. We find no evidence of postmating prezygotic isolation and proceeded to characterize hybrid male sterility between the subspecies. Sterile male hybrids transfer an ejaculate that is devoid of sperm but causes elongation and expansion of the female uterus. In sterile male hybrids, bulging of the seminal vesicle appears to impede the movement of the sperm toward the sperm pump, where sperm normally mixes with accessory gland products. Our results highlight a unique form of hybrid male sterility in Drosophila that is driven by a mechanical impediment to transfer sperm rather than by an abnormality of the sperm itself. Interestingly, this form of sterility is reminiscent of a form of infertility (azoospermia) that is caused by lack of sperm in the semen due to blockages that impede the sperm from reaching the ejaculate.

11.
Biophys J ; 118(6): 1502-1510, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32061270

RESUMO

Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Ferritinas , Temperatura Alta , Campos Magnéticos
12.
Angew Chem Int Ed Engl ; 57(38): 12385-12389, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30089191

RESUMO

Making cells magnetic is a long-standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in "ultraparamagnetic" macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.


Assuntos
Quelantes/química , Compostos Férricos/química , Magnetismo , Animais , Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Peptídeos/genética , Plasmídeos/genética , Plasmídeos/metabolismo
13.
Nat Commun ; 9(1): 131, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317627

RESUMO

Magnetic resonance imaging (MRI) is a widely used biomedical imaging modality that derives much of its contrast from microscale magnetic field patterns in tissues. However, the connection between these patterns and the appearance of macroscale MR images has not been the subject of direct experimental study due to a lack of methods to map microscopic fields in biological samples. Here, we optically probe magnetic fields in mammalian cells and tissues with submicron resolution and nanotesla sensitivity using nitrogen-vacancy diamond magnetometry, and combine these measurements with simulations of nuclear spin precession to predict the corresponding MRI contrast. We demonstrate the utility of this technology in an in vitro model of macrophage iron uptake and histological samples from a mouse model of hepatic iron overload. In addition, we follow magnetic particle endocytosis in live cells. This approach bridges a fundamental gap between an MRI voxel and its microscopic constituents.

14.
Prog Nucl Magn Reson Spectrosc ; 102-103: 32-42, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29157492

RESUMO

Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Fenômenos Biofísicos , Difusão , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Metaloproteínas/metabolismo
15.
Biochemistry ; 56(39): 5202-5209, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28782927

RESUMO

Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today's most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology.


Assuntos
Bioquímica/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia/métodos , Animais , Engenharia , Humanos
16.
Nat Commun ; 7: 13891, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008959

RESUMO

Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Proteínas de Fluorescência Verde/metabolismo , Água/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Camundongos SCID , Permeabilidade , Transplante Heterólogo
17.
ACS Photonics ; 3(12): 2445-2452, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28451625

RESUMO

We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f/2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...