Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Influenza Other Respir Viruses ; 17(11): e13220, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37936576

RESUMO

Since 2004, the US Centers for Disease Control and Prevention (CDC) Influenza Division (ID) has supported seven countries in the Eastern Mediterranean region and the World Health Organization Regional Office for the Eastern Mediterranean to establish and strengthen influenza surveillance. The substantial growth of influenza surveillance capacities in the region demonstrates a commitment by governments to strengthen national programs and contribute to global surveillance. The full value of surveillance data is in its use to guide local public health decisions. CDC ID remains committed to supporting the region and supporting partners to translate surveillance data into policies and programs effectively.


Assuntos
Influenza Humana , Estados Unidos/epidemiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Saúde Pública , Organização Mundial da Saúde , Região do Mediterrâneo/epidemiologia , Centers for Disease Control and Prevention, U.S.
2.
BMC Genomics ; 22(1): 399, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058981

RESUMO

BACKGROUND: Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. RESULTS: We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. CONCLUSIONS: These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


Assuntos
Arvicolinae , Ligação do Par , Animais , Arvicolinae/genética , Encéfalo , Humanos , Comportamento Social , Especificidade da Espécie
3.
mSystems ; 4(6)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744907

RESUMO

Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.

4.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358336

RESUMO

Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.


Assuntos
Adesinas Bacterianas/genética , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Genoma Bacteriano , Genômica , Fatores de Virulência de Bordetella/genética , Adesinas Bacterianas/biossíntese , Duplicação Gênica , Genômica/métodos , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Fatores de Virulência de Bordetella/biossíntese , Sequenciamento Completo do Genoma , Coqueluche/imunologia , Coqueluche/microbiologia
5.
J Bacteriol ; 199(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167525

RESUMO

Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology.


Assuntos
Cromossomos Bacterianos/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano , Bordetella pertussis , Sequência Conservada , Ordem dos Genes/genética , Genes Bacterianos/genética , Ligação Genética , Variação Genética/genética , Filogenia
6.
Genome Announc ; 4(5)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27795250

RESUMO

Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections.

8.
PLoS One ; 7(1): e29345, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238603

RESUMO

The prairie vole (Microtus ochrogaster) is an important model organism for the study of social behavior, yet our ability to correlate genes and behavior in this species has been limited due to a lack of genetic and genomic resources. Here we report the BAC-based targeted sequencing of behaviorally-relevant genes and flanking regions in the prairie vole. A total of 6.4 Mb of non-redundant or haplotype-specific sequence assemblies were generated that span the partial or complete sequence of 21 behaviorally-relevant genes as well as an additional 55 flanking genes. Estimates of nucleotide diversity from 13 loci based on alignments of 1.7 Mb of haplotype-specific assemblies revealed an average pair-wise heterozygosity (8.4×10(-3)). Comparative analyses of the prairie vole proteins encoded by the behaviorally-relevant genes identified >100 substitutions specific to the prairie vole lineage. Finally, our sequencing data indicate that a duplication of the prairie vole AVPR1A locus likely originated from a recent segmental duplication spanning a minimum of 105 kb. In summary, the results of our study provide the genomic resources necessary for the molecular and genetic characterization of a high-priority set of candidate genes for regulating social behavior in the prairie vole.


Assuntos
Arvicolinae/genética , Arvicolinae/fisiologia , Comportamento Animal/fisiologia , Cromossomos Artificiais Bacterianos/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Animais , Frequência do Gene , Genes/fisiologia , Variação Genética/fisiologia , Mutação INDEL/fisiologia , Filogenia , Polimorfismo de Nucleotídeo Único/fisiologia , Duplicações Segmentares Genômicas , Alinhamento de Sequência
9.
BMC Genet ; 12: 60, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21736755

RESUMO

BACKGROUND: The prairie vole (Microtus ochrogaster) is an emerging rodent model for investigating the genetics, evolution and molecular mechanisms of social behavior. Though a karyotype for the prairie vole has been reported and low-resolution comparative cytogenetic analyses have been done in this species, other basic genetic resources for this species, such as a genetic linkage map, are lacking. RESULTS: Here we report the construction of a genome-wide linkage map of the prairie vole. The linkage map consists of 406 markers that are spaced on average every 7 Mb and span an estimated ~90% of the genome. The sex average length of the linkage map is 1707 cM, which, like other Muroid rodent linkage maps, is on the lower end of the length distribution of linkage maps reported to date for placental mammals. Linkage groups were assigned to 19 out of the 26 prairie vole autosomes as well as the X chromosome. Comparative analyses of the prairie vole linkage map based on the location of 387 Type I markers identified 61 large blocks of synteny with the mouse genome. In addition, the results of the comparative analyses revealed a potential elevated rate of inversions in the prairie vole lineage compared to the laboratory mouse and rat. CONCLUSIONS: A genetic linkage map of the prairie vole has been constructed and represents the fourth genome-wide high-resolution linkage map reported for Muroid rodents and the first for a member of the Arvicolinae sub-family. This resource will advance studies designed to dissect the genetic basis of a variety of social behaviors and other traits in the prairie vole as well as our understanding of genome evolution in the genus Microtus.


Assuntos
Arvicolinae/genética , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Hibridização Genômica Comparativa , Genoma , Animais , Inversão Cromossômica , Perfilação da Expressão Gênica , Loci Gênicos , Marcadores Genéticos , Genótipo , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Ratos , Sintenia
10.
J Hered ; 102(4): 380-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21613376

RESUMO

Inversion polymorphisms have been linked to a variety of fundamental biological and evolutionary processes. Yet few studies have used large-scale genomic sequencing to directly compare the haplotypes associated with the standard and inverted chromosome arrangements. Here we describe the targeted genomic sequencing and comparison of haplotypes representing alternative arrangements of a common inversion polymorphism linked to a suite of phenotypes in the white-throated sparrow (Zonotrichia albicollis). More than 7.4 Mb of genomic sequence was generated and assembled from both the standard (ZAL2) and inverted (ZAL2(m)) arrangements. Sequencing of a pair of inversion breakpoints led to the identification of a ZAL2-specific segmental duplication, as well as evidence of breakpoint reusage. Comparison of the haplotype-based sequence assemblies revealed low genetic differentiation outside versus inside the inversion indicative of historical patterns of gene flow and suppressed recombination between ZAL2 and ZAL2(m). Finally, despite ZAL2(m) being maintained in a near constant state of heterozygosity, no signatures of genetic degeneration were detected on this chromosome. Overall, these results provide important insights into the genomic attributes of an inversion polymorphism linked to mate choice and variation in social behavior.


Assuntos
Inversão Cromossômica/genética , Fenótipo , Polimorfismo Genético/genética , Pardais/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Análise por Conglomerados , Feminino , Componentes do Gene , Haplótipos/genética , Hibridização in Situ Fluorescente , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Alinhamento de Sequência , Análise de Sequência de DNA , Comportamento Sexual Animal/fisiologia , Comportamento Social , Pardais/fisiologia
11.
Genome Biol Evol ; 2: 358-70, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20624740

RESUMO

Bitter taste perception likely evolved as a protective mechanism against the ingestion of harmful compounds in food. The evolution of the taste receptor type 2 (TAS2R) gene family, which encodes the chemoreceptors that are directly responsible for the detection of bitter compounds, has therefore been of considerable interest. Though TAS2R repertoires have been characterized for a number of species, to date the complement of TAS2Rs from just one bird, the chicken, which had a notably small number of TAS2Rs, has been established. Here, we used targeted mapping and genomic sequencing in the white-throated sparrow (Zonotrichia albicollis) and sample sequencing in other closely related birds to reconstruct the history of a TAS2R gene cluster physically linked to the break points of an evolutionary chromosomal rearrangement. In the white-throated sparrow, this TAS2R cluster encodes up to 18 functional bitter taste receptors and likely underwent a large expansion that predates and/or coincides with the radiation of the Emberizinae subfamily into the New World. In addition to signatures of gene birth-and-death evolution within this cluster, estimates of Ka/Ks for the songbird TAS2Rs were similar to those previously observed in mammals, including humans. Finally, comparison of the complete genomic sequence of the cluster from two common haplotypes in the white-throated sparrow revealed a number of nonsynonymous variants and differences in functional gene content within this species. These results suggest that interspecies and intraspecies genetic variability does exist in avian TAS2Rs and that these differences could contribute to variation in bitter taste perception in birds.


Assuntos
Evolução Molecular , Família Multigênica , Receptores Acoplados a Proteínas G/genética , Pardais/genética , Sequência de Aminoácidos , Animais , Quebra Cromossômica , Inversão Cromossômica , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Tentilhões/classificação , Tentilhões/genética , Duplicação Gênica , Rearranjo Gênico , Ligação Genética , Variação Genética , Haplótipos , Dados de Sequência Molecular , Filogenia , Aves Canoras/classificação , Aves Canoras/genética , Pardais/classificação , Especificidade da Espécie , Paladar/genética
12.
Chromosome Res ; 18(5): 543-53, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20535633

RESUMO

A hallmark feature of the male-specific region of the human Y chromosome is the presence of large and near-identical palindromes. These palindromes are maintained in a state of near identity via gene conversion between the arms of the palindrome, and both neutral and selection-based theories have been proposed to explain their enrichment on the human Y and X chromosomes. While those proposed theories would be applicable to sex chromosomes in other species, it has not been established whether near-identical palindromes are a common feature of sex chromosomes in a broader range of taxa, including other tetrapods. Here, we report the genomic sequencing and features of a 279-kb region of the non-recombining portion of the W chromosome spanning the CHD1W locus in a New World sparrow, the white-throated sparrow (Zonotrichia albicollis), and the corresponding region on the Z chromosome. As has been observed for other Y and W chromosomes, we detected a high repetitive element content (51%) and low gene content on the white-throated sparrow W chromosome. In addition, we identified a 22-kb near-identical (>99%) palindrome on the W chromosome that flanks the 5' end of the CHD1W gene. Signatures of gene conversion were readily detected between the arms of this palindrome, as was the presence of this palindrome in other New World sparrows and blackbirds. Near-identical palindromes are therefore present on the avian W chromosome and may persist due to the same forces proposed for the enrichment of these elements on the human sex chromosomes.


Assuntos
Conversão Gênica , Cromossomos Sexuais/ultraestrutura , Aves Canoras/genética , Pardais/genética , Animais , Sequência de Bases , Cromossomos , Feminino
13.
BMC Genomics ; 11: 70, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20109198

RESUMO

BACKGROUND: The prairie vole (Microtus ochrogaster) is a premier animal model for understanding the genetic and neurological basis of social behaviors. Unlike other biomedical models, prairie voles display a rich repertoire of social behaviors including the formation of long-term pair bonds and biparental care. However, due to a lack of genomic resources for this species, studies have been limited to a handful of candidate genes. To provide a substrate for future development of genomic resources for this unique model organism, we report the construction and characterization of a bacterial artificial chromosome (BAC) library from a single male prairie vole and a prairie vole-mouse (Mus musculus) comparative cytogenetic map. RESULTS: We constructed a prairie vole BAC library (CHORI-232) consisting of 194,267 recombinant clones with an average insert size of 139 kb. Hybridization-based screening of the gridded library at 19 loci established that the library has an average depth of coverage of approximately 10x. To obtain a small-scale sampling of the prairie vole genome, we generated 3884 BAC end-sequences totaling approximately 2.8 Mb. One-third of these BAC-end sequences could be mapped to unique locations in the mouse genome, thereby anchoring 1003 prairie vole BAC clones to an orthologous position in the mouse genome. Fluorescence in situ hybridization (FISH) mapping of 62 prairie vole clones with BAC-end sequences mapping to orthologous positions in the mouse genome was used to develop a first-generation genome-wide prairie vole-mouse comparative cytogenetic map. While conserved synteny was observed between this pair of rodent genomes, rearrangements between the prairie vole and mouse genomes were detected, including a minimum of five inversions and 16 inter-chromosomal rearrangements. CONCLUSIONS: The construction of the prairie vole BAC library and the vole-mouse comparative cytogenetic map represent the first genome-wide modern genomic resources developed for this species. The BAC library will support future genomic, genetic and molecular characterization of this genome and species, and the isolation of clones of high interest to the vole research community will allow for immediate characterization of the regulatory and coding sequences of genes known to play important roles in social behaviors. In addition, these resources provide an excellent platform for future higher resolution cytogenetic mapping and full genome sequencing.


Assuntos
Arvicolinae/genética , Biblioteca Gênica , Genômica , Mapeamento Físico do Cromossomo , Animais , Células Cultivadas , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Masculino , Camundongos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...