Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 58(12): 7451-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267681

RESUMO

Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 µM, with suppression at 50 µM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 µM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Nucleotidiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/antagonistas & inibidores , Aciclovir/farmacologia , Animais , Chlorocebus aethiops , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , Citomegalovirus/crescimento & desenvolvimento , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/genética , DNA Viral/metabolismo , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 2/enzimologia , Herpesvirus Humano 2/crescimento & desenvolvimento , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Cultura Primária de Células , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Virology ; 468-470: 330-339, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25238641

RESUMO

The γ34.5 gene of herpes simplex virus (HSV) 2 encodes ICP34.5, which enhances HSV-2 neurovirulence by an unknown mechanism. We found that an HSV-2 γ34.5-null mutant (γ34.5(-/-)) replicated less robustly than its rescue virus (γ34.5R) in wild-type mouse embryo fibroblasts (MEFs), and in cells primed with IFNß. Increased eIF2α phosphorylation correlated with γ34.5(-/-) attenuation. However, γ34.5(-/-) achieved titers equivalent to γ34.5R in MEFs lacking the type I IFN receptor (IFNα/ßR(-/-)) or lacking protein kinase R. γ34.5(-/-) also replicated poorly in the vaginal mucosa of wild-type mice, caused little genital inflammation, and spread to the nervous system at lower levels compared to γ34.5R. In IFNα/ßR(-/-) mice, however, γ34.5(-/-) regained the capacity to replicate and cause disease equivalent to γ34.5R after intravaginal infection or direct inoculation into the central nervous system. Thus, the capacity of HSV-2 ICP34.5 to interdict the type I IFN response in vivo largely determines its neurovirulence.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 2/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Deleção de Genes , Herpesvirus Humano 2/genética , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Células Vero , Proteínas Virais/genética , Replicação Viral
3.
J Virol ; 88(19): 11284-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031346

RESUMO

UNLABELLED: The herpes simplex virus 1 (HSV-1) ICP34.5 protein strongly influences neurovirulence and regulates several cellular antiviral responses. Despite the clinical importance of HSV-2, relatively little is known about its ICP34.5 ortholog. We found that HSV-2 produces up to four distinct forms of ICP34.5 in infected cells: a full-length protein, one shorter form sharing the N terminus, and two shorter forms sharing the C terminus. These forms appeared with similar kinetics and accumulated in cells over much of the replication cycle. We confirmed that the N-terminal form is translated from the primary unspliced transcript to a stop codon within the intron unique to HSV-2 γ34.5. We found that the N-terminal form was produced in a variety of cell types and by 9 of 10 clinical isolates. ICP27 influenced but was not required for expression of the N-terminal form. Western blotting and reverse transcription-PCR indicated the C-terminal forms did not contain the N terminus and were not products of alternative splicing or internal transcript initiation. Expression plasmids encoding methionine at amino acids 56 and 70 generated products that comigrated in SDS-PAGE with the C1 and C2 forms, respectively, and mutation of these sites abolished C1 and C2. Using a recombinant HSV-2 encoding hemagglutinin (HA)-tagged ICP34.5, we demonstrated that the C-terminal forms were also produced during infection of many human and mouse cell types but were not detectable in mouse primary neurons. The protein diversity generated from the HSV-2 γ34.5 open reading frame implies additional layers of cellular regulation through potential independent activities associated with the various forms of ICP34.5. IMPORTANCE: The herpes simplex virus 1 (HSV-1) protein ICP34.5, encoded by the γ34.5 gene, interferes with several host defense mechanisms by binding cellular proteins that would otherwise stimulate the cell's autophagic, translational-arrest, and type I interferon responses to virus infection. ICP34.5 also plays a crucial role in determining the severity of nervous system infections with HSV-1 and HSV-2. The HSV-2 γ34.5 gene contains an intron not present in HSV-1 γ34.5. A shorter N-terminal form of HSV-2 ICP34.5 can be translated from the unspliced γ34.5 mRNA. Here, we show that two additional forms consisting of the C-terminal portion of ICP34.5 are generated in infected cells. Production of these N- and C-terminal forms is highly conserved among HSV-2 strains, including many clinical isolates, and they are broadly expressed in several cell types, but not mouse primary neurons. Multiple ICP34.5 polypeptides add additional complexity to potential functional interactions influencing HSV-2 neurovirulence.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 2/genética , Fases de Leitura Aberta , Proteínas Virais/genética , Animais , Chlorocebus aethiops , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Herpesvirus Humano 2/metabolismo , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
4.
J Virol ; 87(10): 5882-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487467

RESUMO

The cellular prion protein (PrP) often plays a cytoprotective role by regulating autophagy in response to cell stress. The stress of infection with intracellular pathogens can stimulate autophagy, and autophagic degradation of pathogens can reduce their replication and thus help protect the infected cells. PrP also restricts replication of several viruses, but whether this activity is related to an effect on autophagy is not known. Herpes simplex virus 1 (HSV-1) effectively counteracts autophagy through binding of its ICP34.5 protein to the cellular proautophagy protein beclin-1. Autophagy can reduce replication of an HSV-1 mutant, Δ68H, which is incapable of binding beclin-1. We found that deletion of PrP in mice complements the attenuation of Δ68H, restoring its capacity to replicate in the central nervous system (CNS) to wild-type virus levels after intracranial or corneal infection. Cultured primary astrocytes but not neurons derived from PrP(-/-) mice also complemented the attenuation of Δ68H, enabling Δ68H to replicate at levels equivalent to wild-type virus. Ultrastructural analysis showed that normal astrocytes exhibited an increase in the number of autophagosomes after infection with Δ68H compared with wild-type virus, but PrP(-/-) astrocytes failed to induce autophagy in response to Δ68H infection. Redistribution of EGFP-LC3 into punctae occurred more frequently in normal astrocytes infected with Δ68H than with wild-type virus, but not in PrP(-/-) astrocytes, corroborating the ultrastructural analysis results. Our results demonstrate that PrP is critical for inducing autophagy in astrocytes in response to HSV-1 infection and suggest that PrP positively regulates autophagy in the mouse CNS.


Assuntos
Autofagia , Herpesvirus Humano 1/imunologia , Príons/imunologia , Proteínas Virais/genética , Animais , Astrócitos/virologia , Células Cultivadas , Modelos Animais de Doenças , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/genética , Proteínas Priônicas , Fatores de Virulência/genética
5.
Am J Physiol Heart Circ Physiol ; 302(3): H553-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159995

RESUMO

Erythrocytes have been implicated as controllers of vascular caliber by virtue of their ability to release the vasodilator ATP in response to local physiological and pharmacological stimuli. The regulated release of ATP from erythrocytes requires activation of a signaling pathway involving G proteins (G(i) or G(s)), adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator as well as a final conduit through which this highly charged anion exits the cell. Although pannexin 1 has been shown to be the final conduit for ATP release from human erythrocytes in response to reduced oxygen tension, it does not participate in transport of ATP following stimulation of the prostacyclin (IP) receptor in these cells, which suggests that an additional protein must be involved. Using antibodies directed against voltage-dependent anion channel (VDAC)1, we confirm that this protein is present in human erythrocyte membranes. To address the role of VDAC in ATP release, two structurally dissimilar VDAC inhibitors, Bcl-x(L) BH4(4-23) and TRO19622, were used. In response to the IP receptor agonists, iloprost and UT-15C, ATP release was inhibited by both VDAC inhibitors although neither iloprost-induced cAMP accumulation nor total intracellular ATP concentration were altered. Together, these findings support the hypothesis that VDAC is the ATP conduit in the IP receptor-mediated signaling pathway in human erythrocytes. In addition, neither the pannexin inhibitor carbenoxolone nor Bcl-x(L) BH4(4-23) attenuated ATP release in response to incubation of erythrocytes with the ß-adrenergic receptor agonist isoproterenol, suggesting the presence of yet another channel for ATP release from human erythrocytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Eritrocítica/metabolismo , Receptores de Prostaglandina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Adulto , Animais , Anti-Hipertensivos/farmacologia , Carbenoxolona/farmacologia , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , AMP Cíclico/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Feminino , Humanos , Iloprosta/farmacologia , Isoproterenol/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Coelhos , Receptores de Epoprostenol , Receptores de Prostaglandina/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vasodilatadores/farmacologia , Adulto Jovem , Proteína bcl-X/farmacologia
6.
J Exp Med ; 206(6): 1273-89, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19487424

RESUMO

Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4(+) T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12-20 mo, viruses exhibited concentrated mutations at 17-34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.


Assuntos
Evolução Molecular , Genoma Viral , Infecções por HIV , HIV-1/genética , HIV-1/imunologia , Fenótipo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Feminino , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/classificação , Humanos , Funções Verossimilhança , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Modelos Teóricos , Mutação , Filogenia , Receptores CCR5/imunologia , Vírion/genética , Replicação Viral/genética , Replicação Viral/imunologia
7.
Virology ; 387(2): 414-26, 2009 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-19298995

RESUMO

Identifying the earliest neutralizing antibody specificities that are elicited following infection or vaccination by HIV-1 is an important objective of current HIV/AIDS vaccine research. We have shown previously that transplantation of HIV-1 V3 epitopes into an HIV-2 envelope (Env) scaffold provides a sensitive and specific means to detect and quantify HIV-1 V3 epitope specific neutralizing antibodies (Nabs) in human sera. Here, we employ this HIV-2/HIV-1 V3 scaffolding strategy to study the kinetics of development and breadth of V3-specific Nabs in longitudinal sera from individuals acutely infected with clade C or clade B HIV-1 and in human subjects immunized with clade B HIV-1 immunogens. HIV-2/HIV-1 chimeras containing V3 sequences matched to virus type (HIV-2 or HIV-1), subtype (clade B or C), or strain (autologous or heterologous) were used as test reagents. We found that by 3-8 weeks post infection, 12 of 14 clade C subjects had a median IC(50) V3-specific Nab titer of 1:700 against chimeric viruses containing a heterologous clade C V3. By 5 months post-infection, all 14 subjects were positive for V3-specific Nabs with median titers of 1:8000 against heterologous clade C V3 and 1:1300 against clade B V3. Two acutely infected clade B patients developed heterologous clade B V3-specific Nabs at titers of 1:300 and 1:1800 by 13 weeks of infection and 1:5000 and 1:11000 by 7 months of infection. Titers were not different against chimeras containing autologous clade B V3 sequences. Each of 10 uninfected normal human volunteers who were immunized with clade B HIV-1 Env immunogens, but none of five sham immunized control subjects, developed V3-specific Nabs titers as high as 1:3000 (median 1:1300; range 1:700-1:3000). None of the HIV-1 infected or vaccinated subjects had antibodies that neutralized primary HIV-1 virus strains. These results indicate that high-titer, broadly reactive V3-specific antibodies are among the first to be elicited during acute and early HIV-1 infection and following vaccination but these antibodies lack neutralizing potency against primary HIV-1 viruses, which effectively shield V3 from antibody binding to the functional Env trimer.


Assuntos
Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/sangue , HIV-1/imunologia , HIV-2/imunologia , Fragmentos de Peptídeos/imunologia , Vacinação , Doença Aguda , Sequência de Aminoácidos , Especificidade de Anticorpos , Reações Cruzadas , Epitopos/genética , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Humanos , Dados de Sequência Molecular , Testes de Neutralização , Fragmentos de Peptídeos/genética , Alinhamento de Sequência
8.
J Virol ; 83(3): 1240-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019969

RESUMO

Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2(KR.X7)) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1(YU2) or HIV-1(Ccon) to yield the chimeric proviruses pHIV-2(KR.X7) YU2 V3 and pHIV-2(KR.X7) Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC(50)] <0.005 microg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC(50) measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1(YU2) virus than with the HIV-2(KR.X7) YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1(BORI)) and the corresponding HIV-2(KR.X7) BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.


Assuntos
Quimera , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , HIV-2/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/imunologia , Sequência de Bases , Primers do DNA , Proteína gp120 do Envelope de HIV , HIV-1/genética , HIV-1/fisiologia , HIV-2/genética , HIV-2/fisiologia , Humanos , Mutagênese , Testes de Neutralização , Fragmentos de Peptídeos , Proteínas do Envelope Viral/genética , Replicação Viral
9.
J Virol ; 82(23): 11651-68, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18815292

RESUMO

Identifying the viral epitopes targeted by broad neutralizing antibodies (NAbs) that sometimes develop in human immunodeficiency virus type 1 (HIV-1)-infected subjects should assist in the design of vaccines to elicit similar responses. Here, we investigated the activities of a panel of 24 broadly neutralizing plasmas from subtype B- and C-infected donors using a series of complementary mapping methods, focusing mostly on JR-FL as a prototype subtype B primary isolate. Adsorption with gp120 immobilized on beads revealed that an often large but variable fraction of plasma neutralization was directed to gp120 and that in some cases, neutralization was largely mediated by CD4 binding site (CD4bs) Abs. The results of a native polyacrylamide gel electrophoresis assay using JR-FL trimers further suggested that half of the subtype B and a smaller fraction of subtype C plasmas contained a significant proportion of NAbs directed to the CD4bs. Anti-gp41 neutralizing activity was detected in several plasmas of both subtypes, but in all but one case, constituted only a minor fraction of the overall neutralization activity. Assessment of the activities of the subtype B plasmas against chimeric HIV-2 viruses bearing various fragments of the membrane proximal external region (MPER) of HIV-1 gp41 revealed mixed patterns, implying that MPER neutralization was not dominated by any single specificity akin to known MPER-specific monoclonal Abs. V3 and 2G12-like NAbs appeared to make little or no contribution to JR-FL neutralization titers. Overall, we observed significant titers of anti-CD4bs NAbs in several plasmas, but approximately two-thirds of the neutralizing activity remained undefined, suggesting the existence of NAbs with specificities unlike any characterized to date.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Especificidade de Anticorpos , Anticorpos Anti-HIV/sangue , HIV-1/classificação , HIV-1/imunologia , Animais , Antígenos CD4/fisiologia , Doença Crônica , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Cobaias , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Testes de Neutralização , Fragmentos de Peptídeos/imunologia , Receptores CCR5/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...