Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 52(5): 833-852, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897513

RESUMO

Artisanal and small-scale gold mining (ASGM) is present in over 80 countries, employing about 15 million miners and serving as source of livelihood for millions more. The sector is estimated to be the largest emitter of mercury globally. The Minamata Convention on Mercury seeks to reduce and, where feasible, eliminate mercury use in the ASGM. However, the total quantity of mercury used in ASGM globally is still highly uncertain, and the adoption of mercury-free technologies has been limited. This paper presents an overview of new data, derived from Minamata ASGM National Action Plan submissions, that can contribute to refining estimates of mercury use in ASGM, and then assesses technologies that can support the phase out mercury use in ASGM while increasing gold recovery. The paper concludes with a discussion of social and economic barriers to adoption of these technologies, illustrated by a case study from Uganda.


Assuntos
Mercúrio , Mercúrio/análise , Ouro , Mineração
2.
J Geophys Res Atmos ; 127(16): e2021JD035664, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36582815

RESUMO

Frontal boundaries have been shown to cause large changes in CO2 mole-fractions, but clouds and the complex vertical structure of fronts make these gradients difficult to observe. It remains unclear how the column average CO2 dry air mole-fraction (XCO2) changes spatially across fronts, and how well airborne lidar observations, data assimilation systems, and numerical models without assimilation capture XCO2 frontal contrasts (ΔXCO2, i.e., warm minus cold sector average of XCO2). We demonstrated the potential of airborne Multifunctional Fiber Laser Lidar (MFLL) measurements in heterogeneous weather conditions (i.e., frontal environment) to investigate the ΔXCO2 during four seasonal field campaigns of the Atmospheric Carbon and Transport-America (ACT-America) mission. Most frontal cases in summer (winter) reveal higher (lower) XCO2 in the warm (cold) sector than in the cold (warm) sector. During the transitional seasons (spring and fall), no clear signal in ΔXCO2 was observed. Intercomparison among the MFLL, assimilated fields from NASA's Global Modeling and Assimilation Office (GMAO), and simulations from the Weather Research and Forecasting--Chemistry (WRF-Chem) showed that (a) all products had a similar sign of ΔXCO2 though with different levels of agreement in ΔXCO2 magnitudes among seasons; (b) ΔXCO2 in summer decreases with altitude; and (c) significant challenges remain in observing and simulating XCO2 frontal contrasts. A linear regression analyses between ΔXCO2 for MFLL versus GMAO, and MFLL versus WRF-Chem for summer-2016 cases yielded a correlation coefficient of 0.95 and 0.88, respectively. The reported ΔXCO2 variability among four seasons provide guidance to the spatial structures of XCO2 transport errors in models and satellite measurements of XCO2 in synoptically-active weather systems.

3.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

4.
ACS Earth Space Chem ; 6(4): 909-919, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35495365

RESUMO

Understanding emissions of methane from legacy and ongoing shale gas development requires both regional studies that assess the frequency of emissions and case studies that assess causation. We present the first direct measurements of emissions in a case study of a putatively leaking gas well in the largest shale gas play in the United States. We quantify atmospheric methane emissions in farmland >2 km from the nearest shale gas well cited for casing and cementing issues. We find that emissions are highly heterogeneous as they travel long distances in the subsurface. Emissions were measured near observed patches of dead vegetation and methane bubbling from a stream. An eddy covariance flux tower, chamber flux measurements, and a survey of enhancements of the near-surface methane mole fraction were used to quantify emissions and evaluate the spatial and temporal variability. We combined eddy covariance measurements with the survey of the methane mole fraction to estimate total emissions over the study area (2,800 m2). Estimated at ∼6 kg CH4 day-1, emissions were spatially heterogeneous but showed no temporal trends over 6 months. The isotopic signature of the atmospheric CH4 source (δ13CH4) was equal to -29‰, consistent with methane of thermogenic origin and similar to the isotopic signature of the gas reported from the nearest shale gas well. While the magnitude of emissions from the potential leak is modest compared to large emitters identified among shale gas production sites, it is large compared to estimates of emissions from single abandoned wells. Since other areas of emissions have been identified close to this putatively leaking well, our estimate of emissions likely represents only a portion of total emissions from this event. More comprehensive quantification will require more extensive spatial and temporal sampling of the locations of gas migration to the surface as well as an investigation into the mechanisms of subsurface gas migration. This work highlights an example of atmospheric methane emissions from potential stray gas migration at a location far from a well pad, and further research should explore the frequency and mechanisms behind these types of events to inform careful and strategic natural gas development.

5.
Nat Geosci ; 15(3): 158-164, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300262

RESUMO

Water potential directly controls the function of leaves, roots, and microbes, and gradients in water potential drive water flows throughout the soil-plant-atmosphere continuum. Notwithstanding its clear relevance for many ecosystem processes, soil water potential is rarely measured in-situ, and plant water potential observations are generally discrete, sparse, and not yet aggregated into accessible databases. These gaps limit our conceptual understanding of biophysical responses to moisture stress and inject large uncertainty into hydrologic and land surface models. Here, we outline the conceptual and predictive gains that could be made with more continuous and discoverable observations of water potential in soils and plants. We discuss improvements to sensor technologies that facilitate in situ characterization of water potential, as well as strategies for building new networks that aggregate water potential data across sites. We end by highlighting novel opportunities for linking more representative site-level observations of water potential to remotely-sensed proxies. Together, these considerations offer a roadmap for clearer links between ecohydrological processes and the water potential gradients that have the 'potential' to substantially reduce conceptual and modeling uncertainties.

6.
Atmos Chem Phys ; 21(2): 951-971, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33613665

RESUMO

We apply airborne measurements across three seasons (summer, winter and spring 2017-2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16-23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14-17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼30 %) seasonal discrepancies for dairies and hog farms (with >40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.

7.
Glob Chang Biol ; 27(8): 1560-1571, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33464665

RESUMO

Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.


Assuntos
Dióxido de Carbono , Água , Sequestro de Carbono , Clima , Florestas
8.
Carbon Balance Manag ; 16(1): 4, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33515367

RESUMO

BACKGROUND: Networks of tower-based CO2 mole fraction sensors have been deployed by various groups in and around cities across the world to quantify anthropogenic CO2 emissions from metropolitan areas. A critical aspect in these approaches is the separation of atmospheric signatures from distant sources and sinks (i.e., the background) from local emissions and biogenic fluxes. We examined CO2 enhancements compared to forested and agricultural background towers in Indianapolis, Indiana, USA, as a function of season and compared them to modeled results, as a part of the Indianapolis Flux (INFLUX) project. RESULTS: At the INFLUX urban tower sites, daytime growing season enhancement on a monthly timescale was up to 4.3-6.5 ppm, 2.6 times as large as those in the dormant season, on average. The enhancement differed significantly depending on choice of background and time of year, being 2.8 ppm higher in June and 1.8 ppm lower in August using a forested background tower compared to an agricultural background tower. A prediction based on land cover and observed CO2 fluxes showed that differences in phenology and drawdown intensities drove measured differences in enhancements. Forward modelled CO2 enhancements using fossil fuel and biogenic fluxes indicated growing season model-data mismatch of 1.1 ± 1.7 ppm for the agricultural background and 2.1 ± 0.5 ppm for the forested background, corresponding to 25-29% of the modelled CO2 enhancements. The model-data total CO2 mismatch during the dormant season was low, - 0.1 ± 0.5 ppm. CONCLUSIONS: Because growing season biogenic fluxes at the background towers are large, the urban enhancements must be disentangled from the biogenic signal, and growing season increases in CO2 enhancement could be misinterpreted as increased anthropogenic fluxes if the background ecosystem CO2 drawdown is not considered. The magnitude and timing of enhancements depend on the land cover type and net fluxes surrounding each background tower, so a simple box model is not appropriate for interpretation of these data. Quantification of the seasonality and magnitude of the biological fluxes in the study region using high-resolution and detailed biogenic models is necessary for the interpretation of tower-based urban CO2 networks for cities with significant vegetation.

9.
Environ Sci Technol ; 54(16): 10237-10245, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806908

RESUMO

Global fossil fuel carbon dioxide (FFCO2) emissions will be dictated to a great degree by the trajectory of emissions from urban areas. Conventional methods to quantify urban FFCO2 emissions typically rely on self-reported economic/energy activity data transformed into emissions via standard emission factors. However, uncertainties in these traditional methods pose a roadblock to implementation of effective mitigation strategies, independently monitor long-term trends, and assess policy outcomes. Here, we demonstrate the applicability of the integration of a dense network of greenhouse gas sensors with a science-driven building and street-scale FFCO2 emissions estimation through the atmospheric CO2 inversion process. Whole-city FFCO2 emissions agree within 3% annually. Current self-reported inventory emissions for the city of Indianapolis are 35% lower than our optimal estimate, with significant differences across activity sectors. Differences remain, however, regarding the spatial distribution of sectoral FFCO2 emissions, underconstrained despite the inclusion of coemitted species information.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Cidades , Combustíveis Fósseis
10.
Global Biogeochem Cycles ; 33(4): 484-500, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31244506

RESUMO

We show that transport differences between two commonly used global chemical transport models, GEOS-Chem and TM5, lead to systematic space-time differences in modeled distributions of carbon dioxide and sulfur hexafluoride. The distribution of differences suggests inconsistencies between the transport simulated by the models, most likely due to the representation of vertical motion. We further demonstrate that these transport differences result in systematic differences in surface CO2 flux estimated by a collection of global atmospheric inverse models using TM5 and GEOS-Chem and constrained by in situ and satellite observations. While the impact on inferred surface fluxes is most easily illustrated in the magnitude of the seasonal cycle of surface CO2 exchange, it is the annual carbon budgets that are particularly relevant for carbon cycle science and policy. We show that inverse model flux estimates for large zonal bands can have systematic biases of up to 1.7 PgC/year due to large-scale transport uncertainty. These uncertainties will propagate directly into analysis of the annual meridional CO2 flux gradient between the tropics and northern midlatitudes, a key metric for understanding the location, and more importantly the processes, responsible for the annual global carbon sink. The research suggests that variability among transport models remains the largest source of uncertainty across global flux inversion systems and highlights the importance both of using model ensembles and of using independent constraints to evaluate simulated transport.

11.
Environ Sci Technol ; 53(1): 287-295, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520634

RESUMO

Urban areas contribute approximately three-quarters of fossil fuel derived CO2 emissions, and many cities have enacted emissions mitigation plans. Evaluation of the effectiveness of mitigation efforts will require measurement of both the emission rate and its change over space and time. The relative performance of different emission estimation methods is a critical requirement to support mitigation efforts. Here we compare results of CO2 emissions estimation methods including an inventory-based method and two different top-down atmospheric measurement approaches implemented for the Indianapolis, Indiana, U.S.A. urban area in winter. By accounting for differences in spatial and temporal coverage, as well as trace gas species measured, we find agreement among the wintertime whole-city fossil fuel CO2 emission rate estimates to within 7%. This finding represents a major improvement over previous comparisons of urban-scale emissions, making urban CO2 flux estimates from this study consistent with local and global emission mitigation strategy needs. The complementary application of multiple scientifically driven emissions quantification methods enables and establishes this high level of confidence and demonstrates the strength of the joint implementation of rigorous inventory and atmospheric emissions monitoring approaches.


Assuntos
Poluentes Atmosféricos , Dióxido de Carbono , Cidades , Combustíveis Fósseis , Indiana
12.
J Dent Educ ; 82(12): 1273-1278, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504464

RESUMO

The dental practice market continues to experience unprecedented changes, including the increasing presence and influence of dental service organizations (DSOs)-corporate entities that provide support and practice management for group practices in such areas as financial operations, human resources, marketing, and legal services. At the same time, increasing percentages of new dental graduates are choosing to pursue an initial career path in corporate dental practices. As a result, new graduates and others making a transition into private practice are likely to encounter complicated, multifaceted variables related to associateship opportunities. Experts in dental education are articulating a need for more instruction in practice management, particularly related to DSOs. Accordingly, this Perspectives article discusses issues in five broad categories focused on vetting career decisions in DSOs: business systems; the dental team and patients; clinical dentistry; compensation and professional development; and ownership positions. In addition to explaining the importance of these areas, the authors provide specific questions prospective associates should ask in considering these career options. These considerations should be useful for students and specialists who are preparing for their dental careers and for the educators who help to guide them.


Assuntos
Escolha da Profissão , Docentes de Odontologia , Prática Odontológica de Grupo , Internato e Residência , Estudantes de Odontologia , Prática Odontológica de Grupo/organização & administração , Humanos , Salários e Benefícios
13.
Science ; 361(6398): 186-188, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29930092

RESUMO

Methane emissions from the U.S. oil and natural gas supply chain were estimated by using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 teragrams per year, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. Environmental Protection Agency inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Substantial emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.

14.
Appl Opt ; 56(23): 6531-6547, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047943

RESUMO

Sustained high-quality column carbon dioxide (CO2) atmospheric measurements from space are required to improve estimates of regional and continental-scale sources and sinks of CO2. Modeling of a space-based 2 µm, high pulse energy, triple-pulse, direct detection integrated path differential absorption (IPDA) lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Parameters based on recent technology developments in the 2 µm laser and state-of-the-art HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) detection system were incorporated in this model. Strong absorption features of CO2 in the 2 µm region, which allows optimum lower tropospheric and near surface measurements, were used to project simultaneous measurements using two independent altitude-dependent weighting functions with the triple-pulse IPDA. Analysis of measurements over a variety of atmospheric and aerosol models using a variety of Earth's surface target and aerosol loading conditions were conducted. Water vapor (H2O) influences on CO2 measurements were assessed, including molecular interference, dry-air estimate, and line broadening. Projected performance shows a <0.35 ppm precision and a <0.3 ppm bias in low-tropospheric weighted measurements related to column CO2 optical depth for the space-based IPDA using 10 s signal averaging over the Railroad Valley (RRV) reference surface under clear and thin cloud conditions.

15.
Artigo em Inglês | MEDLINE | ID: mdl-30997362

RESUMO

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

16.
Environ Sci Technol ; 50(16): 8910-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27487422

RESUMO

This paper describes process-based estimation of CH4 emissions from sources in Indianapolis, IN and compares these with atmospheric inferences of whole city emissions. Emissions from the natural gas distribution system were estimated from measurements at metering and regulating stations and from pipeline leaks. Tracer methods and inverse plume modeling were used to estimate emissions from the major landfill and wastewater treatment plant. These direct source measurements informed the compilation of a methane emission inventory for the city equal to 29 Gg/yr (5% to 95% confidence limits, 15 to 54 Gg/yr). Emission estimates for the whole city based on an aircraft mass balance method and from inverse modeling of CH4 tower observations were 41 ± 12 Gg/yr and 81 ± 11 Gg/yr, respectively. Footprint modeling using 11 days of ethane/methane tower data indicated that landfills, wastewater treatment, wetlands, and other biological sources contribute 48% while natural gas usage and other fossil fuel sources contribute 52% of the city total. With the biogenic CH4 emissions omitted, the top-down estimates are 3.5-6.9 times the nonbiogenic city inventory. Mobile mapping of CH4 concentrations showed low level enhancement of CH4 throughout the city reflecting diffuse natural gas leakage and downstream usage as possible sources for the missing residual in the inventory.


Assuntos
Poluentes Atmosféricos , Metano , Indiana , Gás Natural , Instalações de Eliminação de Resíduos
17.
J Air Waste Manag Assoc ; 66(11): 1141-1150, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27333076

RESUMO

Burning natural gas in power plants may emit radon (222Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m-3, averaging 34.5 ± 2.7 Bq m-3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m-3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m-3, were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m-3 compared to modeled enhancements of 0.08 Bq m-3. Measured enhancements around the WCSP averaged -0.2 Bq m-3 compared to the modeled enhancements of 0.05 Bq m-3, which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. IMPLICATIONS: Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants' emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.


Assuntos
Poluentes Radioativos do Ar/análise , Gás Natural/análise , Centrais Elétricas , Radônio/análise , Pennsylvania , Monitoramento de Radiação
18.
J Geophys Res Atmos ; 121(10): 5213-5236, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32818124

RESUMO

Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

19.
Proc Natl Acad Sci U S A ; 112(51): 15597-602, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644584

RESUMO

Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

20.
Appl Opt ; 54(6): 1387-98, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968204

RESUMO

Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 µm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...