Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 42: 26-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22336040

RESUMO

The effectiveness of two different selective inversion methods is investigated to determine timescales of Li ion mobility in paramagnetic Li intercalation materials. The first method is 1D exchange spectroscopy, which employs a 90°-τ(1)-90° sequence for selective inversion of a Li resonance undergoing site exchange. The experiment is most easily applied when the first delay period, τ(1), is set to the frequency difference between two resonances undergoing ion exchange. This enables the determination of ion hopping timescales for single exchange pair systems only. To measure ion dynamics in systems having more than one exchange process, a second selective inversion method was tested on two paramagnetic Li intercalation materials. This second technique, replaces the 90°-τ(1)-90° portion of 1D EXSY with a long, selective shaped pulse (SP). Two paramagnetic solid-state materials, which are both cathode materials for lithion ion batteries, were chosen as model compounds to test the effectiveness of both the selective inversion methods. The first compound, Li(2)VPO(4)F, was chosen as it hosts two Li sites with 1-exchange process. The second model compound is a 3-site, 3-exchange process system, Li(2)VOPO(4). For the 2-site material, Li(2)VPO(4)F, the timescales of the single A-B exchange process were found to be within error of one another regardless of the inversion method. For the 3 Li-site material Li(2)VOPO(4), the three exchange processes, AB, BC, and AC, were found to be on the millisecond timescale as revealed using the SP method. These timescales were determined over a variable temperature range where activation energies extended from 0.6 ± 0.1 eV up to 0.9 ± 0.2 eV.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Espectroscopia de Ressonância Magnética/métodos , Teste de Materiais/métodos , Transferência de Energia , Íons
2.
Phys Chem Chem Phys ; 13(11): 5171-7, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21298154

RESUMO

Here we report the observation of electron delocalization in nano-dimension xLiFePO(4):(1 - x)FePO(4) (x = 0.5) using high temperature, static, (31)P solid state NMR. The (31)P paramagnetic shift in this material shows extreme sensitivity to the oxidation state of the Fe center. At room temperature two distinct (31)P resonances arising from FePO(4) and LiFePO(4) are observed at 5800 ppm and 3800 ppm, respectively. At temperatures near 400 °C these resonances coalesce into a single narrowed peak centered around 3200 ppm caused by the averaging of the electronic environments at the phosphate centers, resulting from the delocalization of the electrons among the iron centers. (7)Li MAS NMR spectra of nanometre sized xLiFePO(4):(1 - x)FePO(4) (x = 0.5) particles at ambient temperature reveal evidence of Li residing at the phase interface between the LiFePO(4) and FePO(4) domains. Moreover, a new broad resonance is resolved at 65 ppm, and is attributed to Li adjacent to the anti-site Fe defect. This information is considered in light of the (7)Li MAS spectrum of LiMnPO(4), which despite being iso-structural with LiFePO(4) yields a remarkably different (7)Li MAS spectrum due to the different electronic states of the paramagnetic centers. For LiMnPO(4) the higher (7)Li MAS paramagnetic shift (65 ppm) and narrowed isotropic resonance (FWHM ≈ 500 Hz) is attributed to an additional unpaired electron in the t(2g) orbital as compared to LiFePO(4) which has δ(iso) = -11 ppm and a FWHM = 9500 Hz. Only the delithiated phase FePO(4) is iso-electronic and iso-structural with LiMnPO(4). This similarity is readily observed in the (7)Li MAS spectrum of xLiFePO(4):(1 - x)FePO(4) (x = 0.5) where Li sitting near Fe in the 3+ oxidation state takes on spectral features reminiscent of LiMnPO(4). Overall, these spectral features allow for better understanding of the chemical and electrochemical (de)lithiation mechanisms of LiFePO(4) and the Li-environments generated upon cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...